A generalization for stable mixed finite elements
暂无分享,去创建一个
[1] B. Auchmann,et al. A geometrically defined discrete hodge operator on simplicial cells , 2006, IEEE Transactions on Magnetics.
[2] H. Whitney. Geometric Integration Theory , 1957 .
[3] P. Milbradt,et al. Polytope finite elements , 2008 .
[4] M. Wardetzky. Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation , 2007 .
[5] S. Christiansen. A CONSTRUCTION OF SPACES OF COMPATIBLE DIFFERENTIAL FORMS ON CELLULAR COMPLEXES , 2008 .
[6] Vadim Shapiro,et al. Discrete physics using metrized chains , 2009, Symposium on Solid and Physical Modeling.
[7] Scott O. Wilson. Cochain algebra on manifolds and convergence under refinement , 2007 .
[8] R. Sibson. A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[10] Anil N. Hirani,et al. Discrete exterior calculus , 2005, math/0508341.
[11] N. Sukumar,et al. Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .
[12] J. Dodziuk. Finite-difference approach to the Hodge theory of harmonic forms , 1976 .
[13] Luke N. Olson,et al. Algebraic Multigrid for Discrete Differential Forms , 2008 .
[14] E. Wachspress,et al. A Rational Finite Element Basis , 1975 .
[15] Anil N. Hirani,et al. Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus , 2008, ArXiv.
[16] F. Teixeira,et al. Geometric finite element discretization of Maxwell equations in primal and dual spaces , 2005, physics/0503013.
[17] A. Yavari. On geometric discretization of elasticity , 2008 .
[18] J. S. Coggan,et al. Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier. , 2008, Biophysical journal.
[19] Ralf Hiptmair,et al. Discrete Hodge-Operators: an Algebraic Perspective , 2001 .