A generalization for stable mixed finite elements

Mixed finite element methods solve a PDE involving two or more variables. In typical problems from electromagnetics and electrodiffusion, the degrees of freedom associated to the different variables are stored on both primal and dual domain meshes and a discrete Hodge star is used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the model and numerical stability of a finite element method. We also show how to define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods.

[1]  B. Auchmann,et al.  A geometrically defined discrete hodge operator on simplicial cells , 2006, IEEE Transactions on Magnetics.

[2]  H. Whitney Geometric Integration Theory , 1957 .

[3]  P. Milbradt,et al.  Polytope finite elements , 2008 .

[4]  M. Wardetzky Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation , 2007 .

[5]  S. Christiansen A CONSTRUCTION OF SPACES OF COMPATIBLE DIFFERENTIAL FORMS ON CELLULAR COMPLEXES , 2008 .

[6]  Vadim Shapiro,et al.  Discrete physics using metrized chains , 2009, Symposium on Solid and Physical Modeling.

[7]  Scott O. Wilson Cochain algebra on manifolds and convergence under refinement , 2007 .

[8]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[10]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[11]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[12]  J. Dodziuk Finite-difference approach to the Hodge theory of harmonic forms , 1976 .

[13]  Luke N. Olson,et al.  Algebraic Multigrid for Discrete Differential Forms , 2008 .

[14]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[15]  Anil N. Hirani,et al.  Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus , 2008, ArXiv.

[16]  F. Teixeira,et al.  Geometric finite element discretization of Maxwell equations in primal and dual spaces , 2005, physics/0503013.

[17]  A. Yavari On geometric discretization of elasticity , 2008 .

[18]  J. S. Coggan,et al.  Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier. , 2008, Biophysical journal.

[19]  Ralf Hiptmair,et al.  Discrete Hodge-Operators: an Algebraic Perspective , 2001 .