Waveguiding in nanoscale metallic apertures.

We study the optical properties of subwavelength metallic waveguides made of nanoscale apertures in a metal. We develop analytical expressions for the fundamental optical modes in apertures. The results are in excellent agreement with finite element calculations. This model provides a physical understanding of the role of non-perfect metallic walls, and of the shape and size of the apertures. They reveal the effect of the skin depth and of the surface plasmon polariton coupling on the waveguide modes. The nanoscopic origin of the increase of the cut-off wavelength due to the electromagnetic penetration depth in the metal is described. Simple expressions and universal curves for the effective index and the cut-off wavelength of the fundamental guided mode of any rectangular metallic waveguide are presented. The results provide an efficient tool for the design of nanoscale waveguides with real metal.

[1]  Novotny,et al.  Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Stefan Enoch,et al.  Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory , 2005 .

[3]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[4]  Shanhui Fan,et al.  Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes , 2005 .

[5]  J. Pendry,et al.  Surfaces with holes in them: new plasmonic metamaterials , 2005 .

[6]  P. Lalanne,et al.  Surface plasmons of metallic surfaces perforated by nanohole arrays , 2005 .

[7]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[8]  T. Ebbesen,et al.  Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.

[9]  N. V. van Hulst,et al.  Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. , 2004, Physical review letters.

[10]  Thomas W. Ebbesen,et al.  The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures , 2005 .

[11]  F. Baida,et al.  Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes , 2006 .

[12]  F. García-Vidal,et al.  Transmission Resonances on Metallic Gratings with Very Narrow Slits , 1999, cond-mat/9904365.

[13]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[14]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[15]  Philippe Lalanne,et al.  Interaction between optical nano-objects at metallo-dielectric interfaces , 2006 .

[16]  R A Linke,et al.  Enhanced light transmission through a single subwavelength aperture. , 2001, Optics letters.

[17]  Thomas W. Ebbesen,et al.  Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture , 1999 .

[18]  Luis Martín-Moreno,et al.  Transmission of light through a single rectangular hole in a real metal , 2006 .

[19]  E. Popov,et al.  Light transmission through a subwavelength hole , 2005 .

[20]  S. Bozhevolnyi Effective-index modeling of channel plasmon polaritons. , 2006, Optics express.

[21]  Esteban Moreno,et al.  Transmission of light through a single rectangular hole. , 2005, Physical review letters.

[22]  The optimal form of the scanning near-field optical microscopy probe with subwavelength aperture , 2005, physics/0509209.

[23]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[24]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[25]  Hervé Rigneault,et al.  Enhancement of single-molecule fluorescence detection in subwavelength apertures. , 2005, Physical review letters.

[26]  Reuven Gordon,et al.  Increased cut-off wavelength for a subwavelength hole in a real metal. , 2005, Optics express.

[27]  J. Pendry,et al.  Theory of extraordinary optical transmission through subwavelength hole arrays. , 2000, Physical review letters.

[28]  F. García-Vidal,et al.  Optical transmission through circular hole arrays in optically thick metal films. , 2004, Optics express.

[29]  Effect of the lossy layer thickness of metal cylindrical waveguide wall on the propagation constant of electromagnetic modes , 2006 .

[30]  K. Webb,et al.  Analysis of transmission through small apertures in conducting films , 2006 .

[31]  S Enoch,et al.  Strong modification of the nonlinear optical response of metallic subwavelength hole arrays. , 2006, Physical review letters.

[32]  Franciscus B. Segerink,et al.  Influence of hole size on the extraordinary transmission through subwavelength hole arrays , 2004 .

[33]  A. Moreau,et al.  Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands , 2004 .

[34]  Thomas W. Ebbesen,et al.  Optical transmission properties of a single subwavelength aperture in a real metal , 2004 .

[35]  F. J. García de abajo,et al.  Light transmission through a single cylindrical hole in a metallic film. , 2002, Optics express.