Linguistic Summarization Using IF–THEN Rules and Interval Type-2 Fuzzy Sets

Linguistic summarization (LS) is a data mining or knowledge discovery approach to extract patterns from databases. Many authors have used this technique to generate summaries like “Most senior workers have high salary,” which can be used to better understand and communicate about data; however, few of them have used it to generate IF-THEN rules like “IF X is large and Y is medium, THEN Z is small,” which not only facilitate understanding and communication of data but can also be used in decision-making. In this paper, an LS approach to generate IF-THEN rules for causal databases is proposed. Both type-1 and interval type-2 fuzzy sets are considered. Five quality measures-the degrees of truth, sufficient coverage, reliability, outlier, and simplicity-are defined. Among them, the degree of reliability is especially valuable for finding the most reliable and representative rules, and the degree of outlier can be used to identify outlier rules and data for close-up investigation. An improved parallel coordinates approach for visualizing the IF-THEN rules is also proposed. Experiments on two datasets demonstrate our LS and rule visualization approaches. Finally, the relationships between our LS approach and the Wang-Mendel (WM) method, perceptual reasoning, and granular computing are pointed out.

[1]  Didier Dubois,et al.  Gradual inference rules in approximate reasoning , 1992, Inf. Sci..

[2]  Fuzzy Logic in Control Systems : Fuzzy Logic , 2022 .

[3]  Jerry M. Mendel,et al.  Computing with words and its relationships with fuzzistics , 2007, Inf. Sci..

[4]  Jerry M. Mendel,et al.  Perceptual Computing: Aiding People in Making Subjective Judgments , 2010 .

[5]  Adam Niewiadomski Methods for the Linguistic Summarization of Data: Applications of Fuzzy Sets and Their Extensions , 2008 .

[6]  Dongrui Wu,et al.  GENETIC LEARNING AND PERFORMANCE EVALUATION OF TYPE-2 FUZZY LOGIC CONTROLLERS , 2006 .

[7]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[8]  Ioannis K. Vlachos,et al.  Subsethood, entropy, and cardinality for interval-valued fuzzy sets - An algebraic derivation , 2007, Fuzzy Sets Syst..

[9]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[10]  Ding-An Chiang,et al.  Mining time series data by a fuzzy linguistic summary system , 2000, Fuzzy Sets Syst..

[11]  Ronald R. Yager,et al.  A new approach to the summarization of data , 1982, Inf. Sci..

[12]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[13]  Howard J. Hamilton,et al.  Interestingness measures for data mining: A survey , 2006, CSUR.

[14]  Noureddine Mouaddib,et al.  SEQ: a fuzzy set-based approach to database summarization , 2002, Fuzzy Sets Syst..

[15]  Janusz Kacprzyk Linguistic Summaries of Static and Dynamic Data: Computing with Words and Granularity , 2007, 2007 IEEE International Conference on Granular Computing (GRC 2007).

[16]  A. Niewiadomski,et al.  News Generating Based on Interval Type-2 Linguistic Summaries of Databases , 2006 .

[17]  Chi-Hsu Wang,et al.  Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN) , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[18]  Janusz Kacprzyk,et al.  LINGUISTIC SUMMARIES OF DATA USING FUZZY LOGIC , 2001 .

[19]  Lotfi A. Zadeh,et al.  Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems , 1998, Soft Comput..

[20]  Jerry M. Mendel,et al.  Classification of Battlefield Ground Vehicles Using Acoustic Features and Fuzzy Logic Rule-Based Classifiers , 2007, IEEE Transactions on Fuzzy Systems.

[21]  Janusz Kacprzyk,et al.  A Fuzzy Logic Based Approach to Linguistic Summaries of Databases , 2000 .

[22]  Adam Niewiadomski,et al.  On Two Possible Roles of Type-2 Fuzzy Sets in Linguistic Summaries , 2005, AWIC.

[23]  Yiyu Yao,et al.  Granular computing for data mining , 2006, SPIE Defense + Commercial Sensing.

[24]  Abraham Silberschatz,et al.  On Subjective Measures of Interestingness in Knowledge Discovery , 1995, KDD.

[25]  Lotfi A. Zadeh,et al.  A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGES , 1983 .

[26]  Noureddine Mouaddib,et al.  Database Summarization: The SaintEtiQ System , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[27]  Ronald R. Yager,et al.  Linguistic Summaries as a Tool for Database Discovery , 1994, FQAS.

[28]  Ronald R. Yager,et al.  Finding fuzzy and gradual functional dependencies with SummarySQL , 1999, Fuzzy Sets Syst..

[29]  Tom Page,et al.  Time to market prediction using type‐2 fuzzy sets , 2006 .

[30]  L. A. ZADEH,et al.  The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..

[31]  H. Hagras,et al.  Type-2 FLCs: A New Generation of Fuzzy Controllers , 2007, IEEE Computational Intelligence Magazine.

[32]  Salvatore Greco,et al.  Rough Membership and Bayesian Confirmation Measures for Parameterized Rough Sets , 2005, RSFDGrC.

[33]  Hani Hagras,et al.  Interval Type-2 Fuzzy Logic Congestion Control for Video Streaming Across IP Networks , 2009, IEEE Transactions on Fuzzy Systems.

[34]  Jerry M. Mendel,et al.  Perceptual Reasoning for Perceptual Computing: A Similarity-Based Approach , 2009, IEEE Transactions on Fuzzy Systems.

[35]  Jerry M. Mendel,et al.  Interval Type-2 Fuzzy Logic Systems Made Simple , 2006, IEEE Transactions on Fuzzy Systems.

[36]  Jerry M. Mendel,et al.  Interval Type2 Fuzzy Sets , 2010 .

[37]  Ronald R. Yager,et al.  On Linguistic Summaries of Data , 1991, Knowledge Discovery in Databases.

[38]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[39]  Dongrui Wu,et al.  Type-2 FLS Modeling Capability Analysis , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[40]  Y.-Q. Zhang,et al.  Web shopping expert using new interval type-2 fuzzy reasoning , 2007, Soft Comput..

[41]  Jacek M. Zurada,et al.  Computational intelligence methods for rule-based data understanding , 2004, Proceedings of the IEEE.

[42]  Jerry M. Mendel,et al.  Perceptual Reasoning: A New Computing with Words Engine , 2007, 2007 IEEE International Conference on Granular Computing (GRC 2007).

[43]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[44]  Hosein Marzi,et al.  Use of Neural Networks in Forecasting Financial Market , 2007 .

[45]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[46]  Oscar Castillo,et al.  Intelligent Control for a Perturbed Autonomous Wheeled Mobile Robot: a Type-2 Fuzzy Logic Approach , 2007 .

[47]  Ronald R. Yager Database discovery using fuzzy sets , 1996, Int. J. Intell. Syst..

[48]  Anna Wilbik,et al.  Linguistic summarization of time series using a fuzzy quantifier driven aggregation , 2008, Fuzzy Sets Syst..

[49]  Mark T. Maybury,et al.  Advances in Automatic Text Summarization , 1999 .

[50]  Adam Niewiadomski,et al.  A Type-2 Fuzzy Approach to Linguistic Summarization of Data , 2008, IEEE Transactions on Fuzzy Systems.

[51]  Jerry M. Mendel,et al.  Social Judgment Advisor: An application of the Perceptual Computer , 2010, International Conference on Fuzzy Systems.

[52]  Jerry M. Mendel,et al.  Enhanced Interval Approach for encoding words into interval type-2 fuzzy sets and convergence of the word FOUs , 2010, International Conference on Fuzzy Systems.

[53]  Jerry M. Mendel,et al.  MPEG VBR video traffic modeling and classification using fuzzy technique , 2001, IEEE Trans. Fuzzy Syst..

[54]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[55]  Jerry M. Mendel,et al.  Connection admission control in ATM networks using survey-based type-2 fuzzy logic systems , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[56]  Slawomir Zadrozny,et al.  Linguistic database summaries and their protoforms: towards natural language based knowledge discovery tools , 2005, Inf. Sci..

[57]  Janusz Kacprzyk,et al.  Linguistic summaries of sales data at a computer retailer via fuzzy logic and a genetic algorithm , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[58]  Jerry M. Mendel,et al.  Computing withWords for Hierarchical and Distributed Decision-Making , 2010 .

[59]  Alex Alves Freitas,et al.  On rule interestingness measures , 1999, Knowl. Based Syst..

[60]  Woei Wan Tan,et al.  A simplified type-2 fuzzy logic controller for real-time control. , 2006, ISA transactions.

[61]  Huaiqing Wang,et al.  Computing with words via Turing machines: a formal approach , 2003, IEEE Trans. Fuzzy Syst..

[62]  Chuen-Chien Lee,et al.  Fuzzy logic in control systems: fuzzy logic controller. II , 1990, IEEE Trans. Syst. Man Cybern..

[63]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[64]  David V. Budescu,et al.  A review of human linguistic probability processing: General principles and empirical evidence , 1995, The Knowledge Engineering Review.

[65]  Jerry M. Mendel,et al.  Encoding Words Into Interval Type-2 Fuzzy Sets Using an Interval Approach , 2008, IEEE Transactions on Fuzzy Systems.

[66]  B. Kosko Fuzziness vs. probability , 1990 .

[67]  Jerry M. Mendel,et al.  Perceptual Reasoning for Perceptual Computing , 2008, IEEE Transactions on Fuzzy Systems.

[68]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[69]  W. Pedrycz,et al.  Fuzzy computing for data mining , 1999, Proc. IEEE.

[70]  Adam Niewiadomski,et al.  Type-2 Fuzzy Summarization of Data: An Improved News Generating , 2007, RSEISP.

[71]  Jerry M. Mendel,et al.  A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets , 2009, Inf. Sci..

[72]  Jerry M. Mendel,et al.  Computing With Words for Hierarchical Decision Making Applied to Evaluating a Weapon System , 2010, IEEE Transactions on Fuzzy Systems.

[73]  Hisao Ishibuchi,et al.  Rule weight specification in fuzzy rule-based classification systems , 2005, IEEE Transactions on Fuzzy Systems.

[74]  Hisao Ishibuchi,et al.  Three-objective genetics-based machine learning for linguistic rule extraction , 2001, Inf. Sci..

[75]  Jerry M. Mendel,et al.  Intelligent systems for decision support , 2009 .

[76]  Tzung-Pei Hong,et al.  Trade-off Between Computation Time and Number of Rules for Fuzzy Mining from Quantitative Data , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[77]  Jia Zeng,et al.  Type-2 fuzzy hidden Markov models and their application to speech recognition , 2006, IEEE Transactions on Fuzzy Systems.

[78]  Dongrui Wu,et al.  A type-2 fuzzy logic controller for the liquid-level process , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[79]  K. R. Sudha,et al.  Data Encryption Technique Using Random Number Generator , 2007 .

[80]  Adam Niewiadomski,et al.  Elements of the Type-2 Semantics in Summarizing Databases , 2006, ICAISC.

[81]  Uzay Kaymak,et al.  Fuzzy classification using probability-based rule weighting , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[82]  Noureddine Mouaddib,et al.  Using fuzzy labels as background knowledge for linguistic summarization of databases , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[83]  Dongrui Wu,et al.  Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers , 2006, Eng. Appl. Artif. Intell..