Skyline Diagram: Efficient Space Partitioning for Skyline Queries

Skyline queries are important in many application domains. In this paper, we propose a novel structure <italic>Skyline Diagram</italic>, which given a set of points, partitions the plane into a set of regions, referred to as skyline polyominos. All query points in the same skyline polyomino have the same skyline query results. Similar to <italic><inline-formula><tex-math notation="LaTeX">$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="liu-ieq1-2923914.gif"/></alternatives></inline-formula>th-order Voronoi diagram</italic> commonly used to facilitate <inline-formula><tex-math notation="LaTeX">$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="liu-ieq2-2923914.gif"/></alternatives></inline-formula> nearest neighbor (<inline-formula><tex-math notation="LaTeX">$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="liu-ieq3-2923914.gif"/></alternatives></inline-formula>NN) queries, skyline diagram can be used to facilitate skyline queries and many other applications. However, it may be computationally expensive to build the skyline diagram. By exploiting some interesting properties of skyline, we present several efficient algorithms for building the diagram with respect to three kinds of skyline queries, quadrant, global, and dynamic skylines. In addition, we propose an approximate skyline diagram which can significantly reduce the space cost. Experimental results on both real and synthetic datasets show that our algorithms are efficient and scalable.

[1]  Jian Pei,et al.  Secure and Efficient Skyline Queries on Encrypted Data , 2018, IEEE Transactions on Knowledge and Data Engineering.

[2]  Jianliang Xu,et al.  Range-Based Skyline Queries in Mobile Environments , 2013, IEEE Transactions on Knowledge and Data Engineering.

[3]  Xiang Lian,et al.  Reverse skyline search in uncertain databases , 2008, TODS.

[4]  Jian Pei,et al.  Secure Skyline Queries on Cloud Platform , 2017, 2017 IEEE 33rd International Conference on Data Engineering (ICDE).

[5]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[6]  Anthony K. H. Tung,et al.  Finding k-dominant skylines in high dimensional space , 2006, SIGMOD Conference.

[7]  Xiaofeng Xu,et al.  Faster output-sensitive skyline computation algorithm , 2014, Inf. Process. Lett..

[8]  Lu Wang,et al.  Bichromatic Reverse Nearest Neighbor Query without Information Leakage , 2015, DASFAA.

[9]  Jon Louis Bentley,et al.  Multidimensional divide-and-conquer , 1980, CACM.

[10]  Torsten Suel,et al.  On Rectangular Partitionings in Two Dimensions: Algorithms, Complexity, and Applications , 1999, ICDT.

[11]  Bernhard Seeger,et al.  Efficient Computation of Reverse Skyline Queries , 2007, VLDB.

[12]  Yunhao Liu,et al.  Energy-Efficient Reverse Skyline Query Processing over Wireless Sensor Networks , 2012, IEEE Transactions on Knowledge and Data Engineering.

[13]  Jian Pei,et al.  Catching the Best Views of Skyline: A Semantic Approach Based on Decisive Subspaces , 2005, VLDB.

[14]  Man Lung Yiu,et al.  Authentication of moving kNN queries , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[15]  Jian Pei,et al.  Skyline Diagram: Finding the Voronoi Counterpart for Skyline Queries , 2018, 2018 IEEE 34th International Conference on Data Engineering (ICDE).

[16]  Jianliang Xu,et al.  Authenticating Location-Based Skyline Queries in Arbitrary Subspaces , 2014, IEEE Transactions on Knowledge and Data Engineering.

[17]  Haoran Li,et al.  Finding Probabilistic k-Skyline Sets on Uncertain Data , 2015, CIKM.

[18]  Bernard Chazelle,et al.  An Improved Algorithm for Constructing k th-Order Voronoi Diagrams , 1987, IEEE Trans. Computers.

[19]  Seung-won Hwang,et al.  Continuous Skylining on Volatile Moving Data , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[20]  Jianliang Xu,et al.  Authentication of location-based skyline queries , 2011, CIKM '11.

[21]  H. T. Kung,et al.  On the Average Number of Maxima in a Set of Vectors and Applications , 1978, JACM.

[22]  David G. Kirkpatrick,et al.  Output-size sensitive algorithms for finding maximal vectors , 1985, SCG '85.

[23]  Bin Jiang,et al.  Probabilistic Skylines on Uncertain Data , 2007, VLDB.

[24]  Muhammad Aamir Cheema,et al.  A safe zone based approach for monitoring moving skyline queries , 2013, EDBT '13.

[25]  J. Forsmann Rectangular Partitioning , 2007 .

[26]  Qing Liu,et al.  Towards multidimensional subspace skyline analysis , 2006, TODS.

[27]  Xu Chen,et al.  Fast Algorithms for Pareto Optimal Group-based Skyline , 2017, CIKM.

[28]  Jian Pei,et al.  Finding Pareto Optimal Groups: Group-based Skyline , 2015, Proc. VLDB Endow..

[29]  Paulo Cortez,et al.  Modeling wine preferences by data mining from physicochemical properties , 2009, Decis. Support Syst..

[30]  Anthony K. H. Tung,et al.  Continuous Skyline Queries for Moving Objects , 2006, IEEE Transactions on Knowledge and Data Engineering.