Competitive analysis of saccharides or dopamine by boronic acid-functionalized CdSe-ZnS quantum dots.

The fluorescence resonance energy transfer (FRET) between CdSe-ZnS QDs and fluorophore-labeled galactose or fluorophore-labeled dopamine linked to phenyl boronic acid-functionalized QDs is used to develop competitive assays for the optical detection of galactose, glucose, or dopamine.

[1]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[2]  Chun-Yen Chen,et al.  Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H2O. , 2006, Chemical communications.

[3]  I. Willner,et al.  Following the biocatalytic activities of glucose oxidase by electrochemically cross-linked enzyme-Pt nanoparticles composite electrodes. , 2008, Analytical chemistry.

[4]  Itamar Willner,et al.  Optical detection of glucose and acetylcholine esterase inhibitors by H2O2-sensitive CdSe/ZnS quantum dots. , 2008, Angewandte Chemie.

[5]  Zeev Rosenzweig,et al.  Synthesis and application of quantum dots FRET-based protease sensors. , 2006, Journal of the American Chemical Society.

[6]  T. Hayashita,et al.  Boronic acid fluorophore/beta-cyclodextrin complex sensors for selective sugar recognition in water. , 2001, Analytical chemistry.

[7]  Gang Yang,et al.  Polyaniline/Au composite hollow spheres: synthesis, characterization, and application to the detection of dopamine. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[8]  Igor L. Medintz,et al.  A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. , 2005, Journal of the American Chemical Society.

[9]  Hedi Mattoussi,et al.  Avidin: a natural bridge for quantum dot-antibody conjugates. , 2002, Journal of the American Chemical Society.

[10]  Rebekah Drezek,et al.  Protease-activated quantum dot probes. , 2005, Biochemical and biophysical research communications.

[11]  E. Wang,et al.  Quantum dots-bienzyme hybrid system for the sensitive determination of glucose. , 2008, Biosensors & bioelectronics.

[12]  Itamar Willner,et al.  Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. , 2003, Journal of the American Chemical Society.

[13]  Itamar Willner,et al.  Probing biocatalytic transformations with CdSe-ZnS QDs. , 2006, Journal of the American Chemical Society.

[14]  Itamar Willner,et al.  Analysis of dopamine and tyrosinase activity on ion-sensitive field-effect transistor (ISFET) devices. , 2007, Chemistry.

[15]  Soya Gamsey,et al.  Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution. , 2006, Angewandte Chemie.

[16]  Itamar Willner,et al.  Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. , 2005, Analytical chemistry.

[17]  J. Frederiksen,et al.  A New Glucose-Selective Fluorescent Bisboronic Acid. First Report of Strong α-Furanose Complexation in Aqueous Solution at Physiological pH1 , 1999 .

[18]  R. Pereiro,et al.  The use of luminescent quantum dots for optical sensing , 2006 .

[19]  S. Shinkai,et al.  Saccharide Sensing with Molecular Receptors Based on Boronic Acid , 1996 .

[20]  H. Mattoussi,et al.  Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. , 2002, Analytical chemistry.

[21]  I. Willner,et al.  Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage. , 2005, The journal of physical chemistry. B.

[22]  I. Warner,et al.  Stereochemical and regiochemical trends in the selective detection of saccharides. , 2006, Journal of the American Chemical Society.

[23]  G. Wulff Molecular Imprinting in Cross‐Linked Materials with the Aid of Molecular Templates— A Way towards Artificial Antibodies , 1995 .

[24]  Igor L. Medintz,et al.  Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot–peptide conjugates , 2006, Nature materials.

[25]  James H. R. Tucker,et al.  Electrochemical detection of catechol and dopamine as their phenylboronate ester derivatives , 2000 .

[26]  Tony D. James,et al.  Novel Saccharide-Photoinduced Electron Transfer Sensors Based on the Interaction of Boronic Acid and Amine , 1995 .

[27]  Itamar Willner,et al.  Electrochemical, photoelectrochemical, and piezoelectric analysis of tyrosinase activity by functionalized nanoparticles. , 2008, Analytical chemistry.

[28]  S. Shinkai,et al.  Artificial Receptors as Chemosensors for Carbohydrates , 2002 .

[29]  Itamar Willner,et al.  "Plugging into Enzymes": Nanowiring of Redox Enzymes by a Gold Nanoparticle , 2003, Science.

[30]  I. Willner,et al.  Semiconductor quantum dots for bioanalysis. , 2008, Angewandte Chemie.

[31]  N. Rosenzweig,et al.  Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. , 2007, Analytical chemistry.

[32]  Wei Wang,et al.  Boronic Acid-Based Sensors , 2002 .

[33]  M. Bawendi,et al.  CdSe nanocrystal based chem-/bio- sensors. , 2007, Chemical Society reviews.

[34]  Chun-Yang Zhang,et al.  Microfluidic control of fluorescence resonance energy transfer: breaking the FRET limit. , 2007, Angewandte Chemie.

[35]  John O. Edwards,et al.  Polyol Complexes and Structure of the Benzeneboronate Ion , 1959 .

[36]  Moungi G Bawendi,et al.  A ratiometric CdSe/ZnS nanocrystal pH sensor. , 2006, Journal of the American Chemical Society.

[37]  Warren C. W. Chan,et al.  Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges , 2006 .

[38]  Suman,et al.  Galactose sensor based on galactose oxidase immobilized in polyvinyl formal , 2006 .

[39]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.