Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records

[1]  F. Joos,et al.  Simulation of atmospheric radiocarbon during abrupt oceanic circulation changes: trying to reconcile models and reconstructions , 2003 .

[2]  A. Mangini,et al.  Beryllium-10 in deep-sea sediments: a tracer for the Earth's magnetic field intensity during the last 200,000 years , 2003 .

[3]  C. Wunsch Determining paleoceanographic circulations, with emphasis on the Last Glacial Maximum , 2003 .

[4]  J. Beer,et al.  Geomagnetic field intensity, North Atlantic Deep Water circulation and atmospheric Δ14C during the last 50 kyr , 2002 .

[5]  H. Synal,et al.  Cosmogenic nuclides during Isotope Stages 2 and 3. , 2002 .

[6]  Peter U. Clark,et al.  The role of the thermohaline circulation in abrupt climate change , 2002, Nature.

[7]  H. Synal,et al.  Reconstruction of the paleoaccumulation rate of central Greenland during the last 75 kyr using the cosmogenic radionuclides 36Cl and 10Be and geomagnetic field intensity data , 2001 .

[8]  Edwards,et al.  Extremely Large Variations of Atmospheric 14C Concentration During the Last Glacial Period , 2001, Science.

[9]  T. Stocker,et al.  Atmospheric radiocarbon during the Younger Dryas: production, ventilation, or both? , 2001 .

[10]  C. Laj,et al.  Presence of the Solar de Vries Cycle (∼205 years) during the Last Ice Age , 2001 .

[11]  T. Stocker,et al.  Atmospheric CO2 concentrations over the last glacial termination. , 2001, Science.

[12]  J. Overpeck,et al.  Synchronous radiocarbon and climate shifts during the last deglaciation. , 2000, Science.

[13]  R. Finkel,et al.  Changes in deep-water formation during the Younger Dryas event inferred from 10Be and 14C records , 2000, Nature.

[14]  H. Synal,et al.  Reconstruction of the geomagnetic field between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core , 2000 .

[15]  H. Synal,et al.  Chlorine-36 evidence for the Mono Lake event in the Summit GRIP ice core , 2000 .

[16]  S. Goldstein,et al.  Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios , 2000, Nature.

[17]  T. Guilderson,et al.  Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation , 2000, Nature.

[18]  M. Frank Comparison of cosmogenic radionuclide production and geomagnetic field intensity over the last 200 000 years , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  T. Stocker,et al.  Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome Ice Core, Antarctica , 2000 .

[20]  T. Goslar,et al.  Variations of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes , 2000, Nature.

[21]  Alexandra Schramm,et al.  Calibration of the 14C time scale to > 40 ka by 234U-230Th dating of Lake Lisan sediments (last glacial Dead Sea) , 2000 .

[22]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[23]  J. Masarik,et al.  Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere , 1999 .

[24]  Y. S. Kok Climatic influence in NRM and 10Be-derived geomagnetic paleointensity data , 1999 .

[25]  Martin Wahlen,et al.  Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica , 1999, Nature.

[26]  T. Stocker,et al.  Asynchrony of Antarctic and Greenland climate change during the last glacial period , 1998, Nature.

[27]  Kitagawa,et al.  Atmospheric radiocarbon calibration to 45,000 yr B.P.: late glacial fluctuations and cosmogenic isotope production , 1998, Science.

[28]  Gary D. Clow,et al.  Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition , 1997 .

[29]  Uffe Andersen,et al.  The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability , 1997 .

[30]  K. Nishiizumi,et al.  Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3–40 ka , 1997 .

[31]  M. Stuiver,et al.  Oxygen 18/16 variability in Greenland snow and ice with 10 -3- to 105-year time resolution , 1997 .

[32]  J. Jouzel,et al.  Beryllium 10 in the Greenland Ice Core Project ice core at Summit , 1997 .

[33]  J. Jouzel,et al.  Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records , 1997 .

[34]  J. Beer,et al.  10Be and dust , 1997 .

[35]  T. Stocker,et al.  Rapid changes in ocean circulation and atmospheric radiocarbon , 1996 .

[36]  J. Valet,et al.  Relative variations in geomagnetic intensity from sedimentary records: the past 200 , 1996 .

[37]  W. Dansgaard,et al.  Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles , 1995 .

[38]  J. Jouzel,et al.  Evidence for general instability of past climate from a 250-kyr ice-core record , 1993, Nature.

[39]  E. Bard,et al.  Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals , 1990, Nature.

[40]  W. Broecker,et al.  The distribution of radiocarbon in the glacial ocean , 1990 .

[41]  J. Beer,et al.  Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core , 1988, Nature.

[42]  W. Broecker,et al.  Does the ocean–atmosphere system have more than one stable mode of operation? , 1985, Nature.

[43]  U. Siegenthaler,et al.  Uptake of excess CO2 by an outcrop-diffusion model of the ocean , 1983 .

[44]  G. Raisbeck,et al.  Be as a probe of atmospheric transport processes , 1981 .

[45]  J. van der Plicht,et al.  Atmospheric Radiocarbon Calibration Beyond 11,900 cal BP from Lake Suigetsu Laminated Sediments , 2000, Radiocarbon.

[46]  M. Sarnthein,et al.  Radiocarbon Levels in the Iceland Sea from 25–53 kyr and their Link to the Earth's Magnetic Field Intensity , 2000, Radiocarbon.

[47]  R. Muscheler Nachweis von Änderungen im Kohlenstoffkreislauf durch Vergleich der Radionuklide ¹⁰Be, ³⁶Cl und ¹⁴C , 2000 .

[48]  J. Shaw,et al.  Variations in the geomagnetic dipole moment over the last 12 000 years , 2000 .

[49]  E. Bard,et al.  Radiocarbon Calibration by Means of Mass Spectrometric 230Th/234U and 14C Ages of Corals: An Updated Database Including Samples from Barbados, Mururoa and Tahiti , 1998, Radiocarbon.

[50]  J. W. Beck,et al.  INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP , 1998, Radiocarbon.

[51]  C. Laj,et al.  Correlation of Marine 14C Ages from the Nordic Seas with the GISP2 Isotope Record: Implications for 14C Calibration Beyond 25 ka BP , 1997, Radiocarbon.

[52]  Deepak Lal,et al.  Theoretically expected variations in the terrestrial cosmic-ray production rates of isotopes , 1988 .

[53]  M. Heimann,et al.  14C Variations Caused by Changes in the Global Carbon Cycle , 1980, Radiocarbon.

[54]  M. Stuiver,et al.  Discussion Reporting of 14C Data , 1977, Radiocarbon.

[55]  D. Lal,et al.  COSMIC RAY PRODUCED RADIOACTIVITY ON THE EARTH. , 1967 .