Study of distinctions in the synergistic effects between carbon nanotubes and different metal oxide nanoparticles on enhancing thermal oxidative stability of silicone rubber

[1]  S. K. Srivastava,et al.  Synergistic effect of carbon nanotubes and clay platelets in reinforcing properties of silicone rubber nanocomposites , 2015 .

[2]  Ica Manas-Zloczower,et al.  Epoxy composites with carbon nanotubes and graphene nanoplatelets – Dispersion and synergy effects , 2014 .

[3]  S. K. Srivastava,et al.  Synergistic effect of three‐dimensional multi‐walled carbon nanotube–graphene nanofiller in enhancing the mechanical and thermal properties of high‐performance silicone rubber , 2014 .

[4]  R. Mülhaupt,et al.  Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene , 2013 .

[5]  W. Huang,et al.  Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite , 2013 .

[6]  K. Liao,et al.  Synergistic toughening of epoxy with carbon nanotubes and graphene oxide for improved long-term performance , 2013 .

[7]  Tapas Kuila,et al.  Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites , 2013 .

[8]  Linan Liu,et al.  Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites , 2013, Nanotechnology.

[9]  Junping Zheng,et al.  The improved thermal oxidative stability of silicone rubber by using iron oxide and carbon nanotubes as thermal resistant additives , 2013 .

[10]  E. Mäder,et al.  behavior of load transfer in functionalized carbon nanotube/epoxy nanocomposites , 2012 .

[11]  梁永日,et al.  Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene , 2012 .

[12]  Jin‐San Yoon,et al.  Surface modification of carbon fiber and the mechanical properties of the silicone rubber/carbon fiber composites , 2012 .

[13]  Shiping Yang,et al.  Solvothermal synthesis and optical limiting properties of carbon nanotube-based hybrids containing ternary chalcogenides , 2012 .

[14]  Jiaxin Li,et al.  Fully Reversible Conversion between SnO2 and Sn in SWNTs@SnO2@PPy Coaxial Nanocable As High Performance Anode Material for Lithium Ion Batteries , 2012 .

[15]  David Wexler,et al.  Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries , 2012 .

[16]  Yern Seung Kim,et al.  Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers , 2012 .

[17]  Z. Lai,et al.  Enhanced visible-light activity of titania via confinement inside carbon nanotubes. , 2011, Journal of the American Chemical Society.

[18]  K. Chrissafis,et al.  Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers , 2011 .

[19]  Tianyi Yang,et al.  Synergistic effect of hybrid carbon nantube–graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites , 2011 .

[20]  T. Peijs,et al.  The synergistic performance of multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for unsaturated polyester , 2011 .

[21]  R. Li,et al.  Nitrogen-doped carbon nanotubes coated by atomic layer deposited SnO2 with controlled morphology and phase , 2011 .

[22]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[23]  Drew C. Higgins,et al.  Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells , 2010, Nanotechnology.

[24]  K. Jacob,et al.  Synthesis, Characterization, and Alignment of Magnetic Carbon Nanotubes Tethered with Maghemite Nanoparticles , 2010 .

[25]  D. Tasis,et al.  Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties , 2010 .

[26]  R. Kozłowski,et al.  The effect of multi-walled carbon nanotubes addition on the thermo-oxidative decomposition and flammability of PP/MWCNT nanocomposites , 2010, Journal of Materials Science.

[27]  M. Gu,et al.  Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide , 2010 .

[28]  U. Ramamurty,et al.  Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons , 2009, Proceedings of the National Academy of Sciences.

[29]  Y. Mai,et al.  A facile method to fabricate silica-coated carbon nanotubes and silica nanotubes from carbon nanotubes templates , 2009 .

[30]  Karl Schulte,et al.  Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black , 2009 .

[31]  A. Boccaccini,et al.  Ceramic matrix composites containing carbon nanotubes , 2009, Journal of Materials Science.

[32]  A. S. Tselesh Anodic behaviour of tin in citrate solutions: The IR and XPS study on the composition of the passive layer , 2008 .

[33]  R. Shanks,et al.  Fire performance of poly(dimethyl siloxane) composites evaluated by cone calorimetry , 2008 .

[34]  A. Nakahira,et al.  Local Structure of TiO2-Derived Nanotubes Prepared by the Hydrothermal Process , 2008 .

[35]  G. Huber,et al.  Effect of Sn Addition to Pt / CeO 2-Al 2 O 3 and Pt / Al 2 O 3 Catalysts : An XPS , 119 Sn Mössbauer and Microcalorimetry Study , 2008 .

[36]  Haiyun Ma,et al.  Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin , 2007 .

[37]  Craig A Grimes,et al.  Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. , 2007, Nano letters.

[38]  Xingbin Yan,et al.  Dispersing and functionalizing multiwalled carbon nanotubes in TiO2 sol. , 2006, The journal of physical chemistry. B.

[39]  H. C. Foley,et al.  Catalytic polymerization and facile grafting of poly(furfuryl alcohol) to single-wall carbon nanotube: preparation of nanocomposite carbon. , 2006, Journal of the American Chemical Society.

[40]  G. Huber,et al.  Effect of Sn addition to Pt/CeO2–Al2O3 and Pt/Al2O3 catalysts: An XPS, 119Sn Mössbauer and microcalorimetry study , 2006 .

[41]  D. W. Sheel,et al.  The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition , 2006 .

[42]  Jimmy C. Yu,et al.  Coating MWNTs with Cu2O of different morphology by a polyol process , 2005 .

[43]  N. S. McIntyre,et al.  Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds , 2004 .

[44]  Jie Zhang,et al.  Kinetics of the thermal degradation and thermal stability of conductive silicone rubber filled with conductive carbon black , 2003 .

[45]  P. Serp,et al.  High purity multiwalled carbon nanotubes under high pressure and high temperature , 2003 .

[46]  Miroslav Mashlan,et al.  Iron(III) Oxides from Thermal ProcessesSynthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications† , 2002 .

[47]  Zhengtao Su Interfacial reaction of stannic oxide in silicone rubber at 300°C , 1999 .

[48]  G. Sawatzky,et al.  In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy , 1999 .

[49]  Dalva Lúcia Araújo de Faria,et al.  Raman microspectroscopy of some iron oxides and oxyhydroxides , 1997 .

[50]  F. Galembeck,et al.  Interfacial reactions and self-adhesion of polydimethylsiloxanes , 1992 .

[51]  Epoxy Composites , 2022 .