Simple regression models can act as calibration-substitute to approximate transient storage parameters in streams

[1]  N. Fohrer,et al.  Charakterisierung des Wasser- und Nährstoffhaushalts im ländlichen Tieflandeinzugsgebiet der Kielstau , 2018 .

[2]  F. Sabater,et al.  High nutrient retention in chronically nutrient-rich lowland streams , 2017, Freshwater Science.

[3]  Neil McIntyre,et al.  A software tool to assess uncertainty in transient-storage model parameters using Monte Carlo simulations , 2017, Freshwater Science.

[4]  Daniel W. Baker,et al.  Effects of Passive and Structural Stream Restoration Approaches on Transient Storage and Nitrate Uptake , 2016 .

[5]  Daniel W. Baker,et al.  Comparing Transient Storage and Nitrate Uptake Among Two Restoration Approaches in Colorado Headwater Streams , 2016 .

[6]  A. A. Mahboubi,et al.  Predictive equation for longitudinal dispersion coefficient , 2015 .

[7]  Daniel W. Baker,et al.  Influences of sudden changes in discharge and physical stream characteristics on transient storage and nitrate uptake in an urban stream , 2015 .

[8]  J. Duff,et al.  Low transient storage and uptake efficiencies in seven agricultural streams: implications for nutrient demand. , 2014, Journal of environmental quality.

[9]  R. Dahlgren,et al.  A dynamic watershed model for determining the effects of transient storage on nitrogen export to rivers , 2014 .

[10]  Thorsten Wagener,et al.  Identifiability of transient storage model parameters along a mountain stream , 2013 .

[11]  Thorsten Wagener,et al.  Influence of constant rate versus slug injection experiment type on parameter identifiability in a 1‐D transient storage model for stream solute transport , 2013 .

[12]  N. Fohrer,et al.  Ecohydrological research in the German lowland catchment Kielstau , 2010 .

[13]  Andrzej Kraslawski,et al.  Development, calibration and evaluation of two mathematical models for pollutant transport in a small river , 2009, Environ. Model. Softw..

[14]  F. Bormann,et al.  Concepts and Methods for Assessing Solute Dynamics in Stream Ecosystems , 2007 .

[15]  Hoshin Vijai Gupta,et al.  Model identification for hydrological forecasting under uncertainty , 2005 .

[16]  K. Bencala,et al.  Automated calibration of a stream solute transport model: implications for interpretation of biogeochemical parameters , 2003, Journal of the North American Benthological Society.

[17]  J. Morrice,et al.  The hydraulic characteristics and geochemistry of hyporheic and parafluvial zones in Arctic tundra streams, north slope, Alaska , 2003 .

[18]  B. Vaughn,et al.  Determining long time‐scale hyporheic zone flow paths in Antarctic streams , 2003 .

[19]  Robert L. Runkel,et al.  A new metric for determining the importance of transient storage , 2002, Journal of the North American Benthological Society.

[20]  Vijay P. Singh,et al.  Longitudinal dispersion coefficient in single-channel streams , 2002 .

[21]  Thorsten Wagener,et al.  Dynamic identifiability analysis of the transient storage model for solute transport in rivers , 2002, Journal of Hydroinformatics.

[22]  Roger A Falconer,et al.  Longitudinal dispersion coefficients in natural channels. , 2002, Water research.

[23]  Gene E. Likens,et al.  Relating nutrient uptake with transient storage in forested mountain streams , 2002 .

[24]  J. Harvey,et al.  Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams , 2000 .

[25]  Brian J. Wagner,et al.  1 – Quantifying Hydrologic Interactions between Streams and Their Subsurface Hyporheic Zones , 2000 .

[26]  R. Aris A - * On the Dispersion of A Solute in A Fluid Flowing Through A Tube , 1999 .

[27]  Il Won Seo,et al.  Predicting Longitudinal Dispersion Coefficient in Natural Streams , 1998 .

[28]  C. Cáceres,et al.  Temporal variation, dormancy, and coexistence: a field test of the storage effect. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Brian J. Wagner,et al.  Experimental design for estimating parameters of rate‐limited mass transfer: Analysis of stream tracer studies , 1997 .

[30]  Brian J. Wagner,et al.  Evaluating the Reliability of the Stream Tracer Approach to Characterize Stream‐Subsurface Water Exchange , 1996 .

[31]  K. Bencala,et al.  The Effect of streambed topography on surface‐subsurface water exchange in mountain catchments , 1993 .

[32]  R. Runkel,et al.  One-Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Small Streams , 1991 .

[33]  Stream Solute Workshop Concepts and Methods for Assessing Solute Dynamics in Stream Ecosystems , 1990, Journal of the North American Benthological Society.

[34]  Nicholas G. Aumen,et al.  Concepts and methods for assessing solute dynamics in stream ecosystems , 1990 .

[35]  Roy A. Walters,et al.  Simulation of solute transport in a mountain pool‐and‐riffle stream: A transient storage model , 1983 .

[36]  Thomas N. Keefer,et al.  Simple Method for Predicting Dispersion in Streams , 1974 .

[37]  J. W. Elder The dispersion of marked fluid in turbulent shear flow , 1959, Journal of Fluid Mechanics.

[38]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[39]  G. Taylor Diffusion and Mass Transport in Tubes , 1954 .