Relaxed-Responsibility Hierarchical Discrete VAEs

Successfully training Variational Autoencoders (VAEs) with a hierarchy of discrete latent variables remains an area of active research. Leveraging insights from classical methods of inference we introduce $\textit{Relaxed-Responsibility Vector-Quantisation}$, a novel way to parameterise discrete latent variables, a refinement of relaxed Vector-Quantisation. This enables a novel approach to hierarchical discrete variational autoencoder with numerous layers of latent variables that we train end-to-end. Unlike discrete VAEs with a single layer of latent variables, we can produce realistic-looking samples by ancestral sampling: it is not essential to train a second generative model over the learnt latent representations to then sample from and then decode. Further, we observe different layers of our model become associated with different aspects of the data.

[1]  Ole Winther,et al.  BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling , 2019, NeurIPS.

[2]  O. Winther,et al.  Towards Hierarchical Discrete Variational Autoencoders , 2019 .

[3]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[4]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[5]  Kumar Krishna Agrawal,et al.  Discrete Flows: Invertible Generative Models of Discrete Data , 2019, DGS@ICLR.

[6]  Ali Razavi,et al.  Generating Diverse High-Fidelity Images with VQ-VAE-2 , 2019, NeurIPS.

[7]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[8]  David P. Wipf,et al.  Diagnosing and Enhancing VAE Models , 2019, ICLR.

[9]  Eric Nalisnick,et al.  Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..

[10]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[11]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[12]  Mohammad Norouzi,et al.  Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse , 2019, NeurIPS.

[13]  Ali Razavi,et al.  Preventing Posterior Collapse with delta-VAEs , 2019, 1901.03416.

[14]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[15]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.

[16]  Brendan J. Frey,et al.  Free energy coding , 1996, Proceedings of Data Compression Conference - DCC '96.

[17]  Geoffrey E. Hinton,et al.  Autoencoders, Minimum Description Length and Helmholtz Free Energy , 1993, NIPS.

[18]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[19]  Xi Chen,et al.  PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications , 2017, ICLR.

[20]  Casper Kaae Sønderby Continuous Relaxation Training of Discrete Latent Variable Image Models , 2017 .

[21]  Ole Winther,et al.  Ladder Variational Autoencoders , 2016, NIPS.

[22]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[23]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[24]  Stefano Ermon,et al.  Learning Hierarchical Features from Generative Models , 2017, ArXiv.

[25]  Stefano Ermon,et al.  Learning Hierarchical Features from Deep Generative Models , 2017, ICML.

[26]  Gunnar Rätsch,et al.  SOM-VAE: Interpretable Discrete Representation Learning on Time Series , 2018, ICLR 2018.

[27]  David Barber,et al.  HiLLoC: Lossless Image Compression with Hierarchical Latent Variable Models , 2019, ICLR.

[28]  John Hughes,et al.  Hierarchical Quantized Autoencoders , 2020, NeurIPS.

[29]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[30]  Oriol Vinyals,et al.  Neural Discrete Representation Learning , 2017, NIPS.

[31]  Yee Whye Teh,et al.  The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables , 2016, ICLR.

[32]  Emiel Hoogeboom,et al.  Integer Discrete Flows and Lossless Compression , 2019, NeurIPS.

[33]  Alex Graves,et al.  Conditional Image Generation with PixelCNN Decoders , 2016, NIPS.

[34]  Ben Poole,et al.  Categorical Reparameterization with Gumbel-Softmax , 2016, ICLR.

[35]  David Barber,et al.  Practical Lossless Compression with Latent Variables using Bits Back Coding , 2019, ICLR.

[36]  Jörg Bornschein,et al.  Variational Memory Addressing in Generative Models , 2017, NIPS.