Noise causes slant underestimation in stereo and motion

This paper discusses a problem, which is inherent in the estimation of 3D shape (surface normals) from multiple views. Noise in the image signal causes bias, which may result in substantial errors in the parameter estimation. The bias predicts the underestimation of slant found in psychophysical and computational experiments. Specifically, we analyze the estimation of 3D shape from motion and stereo using orientation disparity. For the case of stereo, we show that bias predicts the anisotropy in the perception of horizontal and vertical slant. For the case of 3D motion we demonstrate the bias by means of a new illusory display. Finally, we discuss statistically optimal strategies for the problem and suggest possible avenues for visual systems to deal with the bias.

[1]  S. Shankar Sastry,et al.  An Invitation to 3-D Vision , 2004 .

[2]  O. Faugeras,et al.  The Geometry of Multiple Images , 1999 .

[3]  James A. Crowell,et al.  Horizontal and vertical disparity, eye position, and stereoscopic slant perception , 1999, Vision Research.

[4]  J. P. Southall Helmholtz's Treatise on Physiological Optics, Translated from the Third German Edition. Vol. I , 1925 .

[5]  Yiannis Aloimonos,et al.  The Statistics of Optical Flow , 2001, Comput. Vis. Image Underst..

[6]  J. Garding,et al.  Shape from texture and contour by weak isotropy , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[7]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[8]  B. Rogers,et al.  Anisotropies in the perception of stereoscopic surfaces: The role of orientation disparity , 1993, Vision Research.

[9]  金谷 健一 Statistical optimization for geometric computation : theory and practice , 2005 .

[10]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[11]  Barbara Gillam,et al.  Cue Conflict and Stereoscopic Surface Slant about Horizontal and Vertical Axes , 1994, Perception.

[12]  Victor Solo,et al.  Errors-in-variables modeling in optical flow estimation , 2001, IEEE Trans. Image Process..

[13]  Hermann von Helmholtz,et al.  Treatise on Physiological Optics , 1962 .

[14]  David C. Knill,et al.  Surface orientation from texture: ideal observers, generic observers and the information content of texture cues , 1998, Vision Research.

[15]  J T Todd,et al.  The visual perception of surface orientation from optical motion , 1999, Perception & psychophysics.

[16]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[17]  Vision Research , 1961, Nature.

[18]  J. Aloimonos Shape from texture , 1988, Biological cybernetics.

[19]  G. W. Stewart,et al.  Stochastic Perturbation Theory , 1990, SIAM Rev..

[20]  J A Perrone,et al.  Visual Slant Underestimation: A General Model , 1982, Perception.

[21]  Katsushi Ikeuchi,et al.  Numerical Shape from Shading and Occluding Boundaries , 1981, Artif. Intell..

[22]  Carlo Tomasi,et al.  Is Structure-from-Motion Worth Pursuing? , 1996 .

[23]  C. Fermüller,et al.  Uncertainty in visual processes predicts geometrical optical illusions , 2004, Vision Research.

[24]  Thomas S. Huang,et al.  Theory of Reconstruction from Image Motion , 1992 .

[25]  Ruzena Bajcsy,et al.  Texture gradient as a depth cue , 1976 .

[26]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[27]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[28]  Takeo Kanade,et al.  Determining shape and reflectance of hybrid surfaces by photometric sampling , 1989, IEEE Trans. Robotics Autom..

[29]  Kiriakos N. Kutulakos,et al.  Global surface reconstruction by purposive control of observer motion , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[30]  J J Koenderink,et al.  What Does the Occluding Contour Tell Us about Solid Shape? , 1984, Perception.

[31]  Rama Chellappa,et al.  Statistical Error Propagation in 3D Modeling From Monocular Video , 2003, 2003 Conference on Computer Vision and Pattern Recognition Workshop.

[32]  S. McKee,et al.  Mechanisms underlying the anisotropy of stereoscopic tilt perception , 1990, Vision Research.

[33]  J. Koenderink,et al.  Depth Relief , 1995, Perception.

[34]  Hans-Hellmut Nagel,et al.  Optical flow estimation and the interaction between measurement errors at adjacent pixel positions , 1995, International Journal of Computer Vision.

[35]  Thomas S. Huang,et al.  Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  J. Koenderink,et al.  Surface perception in pictures , 1992, Perception & psychophysics.

[37]  Minas E. Spetsakis,et al.  A multi-frame approach to visual motion perception , 1991, International Journal of Computer Vision.

[38]  Robert Pless,et al.  The Ouchi illusion as an artifact of biased flow estimation , 2000, Vision Research.

[39]  Wayne A. Fuller,et al.  Measurement Error Models , 1988 .

[40]  Cornelia Fermüller,et al.  Uncertainty in 3D Shape Estimation , 2003 .

[41]  G J Andersen,et al.  The Perception of Depth and Slant from Texture in Three-Dimensional Scenes , 1998, Perception.

[42]  H. Wilson,et al.  Moving two-dimensional patterns can capture the perceived directions of lower or higher spatial frequency gratings , 1992, Vision Research.

[43]  Hans-Hellmut Nagel,et al.  Analytical Results on Error Sensitivity of Motion Estimation from Two Views , 1990, ECCV.