On the cross-section of dark matter using substructure infall into galaxy clusters
暂无分享,去创建一个
T. Kitching | R. Massey | Andy N. Taylor | D. Harvey | Eric R. Tittley | D. Nagai | S. Pike | S. Kay | E. Lau | E. Tittley | A. Taylor
[1] X-rays from the Coma cluster of galaxies , 1966 .
[2] John Dubinski,et al. The structure of cold dark matter halos , 1991 .
[3] N. Kaiser,et al. Mapping the dark matter with weak gravitational lensing , 1993 .
[4] G. Kauffmann,et al. The formation and evolution of galaxies within merging dark matter haloes , 1993 .
[5] U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov , 1996 .
[6] Weakly Self-interacting Dark Matter and the Structure of Dark Halos , 2000, astro-ph/0006134.
[7] C. Firmani,et al. Evidence of self-interacting cold dark matter from galactic to galaxy cluster scales , 2000, astro-ph/0002376.
[8] Spergel,et al. Observational evidence for self-interacting cold dark matter , 1999, Physical review letters.
[9] H. M. P. Couchman,et al. Smoothed Particle Hydrodynamics in cosmology: a comparative study of implementations , 2000 .
[10] J. Ostriker,et al. Limits on Collisional Dark Matter from Elliptical Galaxies in Clusters , 2000, astro-ph/0010436.
[11] M. Bartelmann,et al. Weak gravitational lensing , 2016, Scholarpedia.
[12] M. Meneghetti,et al. Giant cluster arcs as a constraint on the scattering cross-section of dark matter , 2000, astro-ph/0011405.
[13] J. Miralda-Escudé. A Test of the Collisional Dark Matter Hypothesis from Cluster Lensing , 2000, astro-ph/0002050.
[14] U. Florida,et al. Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657–558: Direct Evidence for the Existence of Dark Matter , 2003, astro-ph/0312273.
[15] A. Réfrégier. Weak Gravitational Lensing by Large-Scale Structure , 2003, astro-ph/0307212.
[16] UCSD,et al. Direct Constraints on the Dark Matter Self-Interaction Cross Section from the Merging Galaxy Cluster 1E 0657–56 , 2004 .
[17] V. Springel. The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.
[18] Tucson,et al. A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.
[19] Tucson,et al. Strong and Weak Lensing United. III. Measuring the Mass Distribution of the Merging Galaxy Cluster 1ES 0657–558 , 2006, astro-ph/0608408.
[20] J. Monaghan,et al. Fundamental differences between SPH and grid methods , 2006, astro-ph/0610051.
[21] Cea,et al. Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.
[22] H. Hoekstra,et al. A Dark Core in Abell 520 , 2007, 0706.3048.
[23] J. Kneib,et al. A Bayesian approach to strong lensing modelling of galaxy clusters , 2007, 0706.0048.
[24] M. Pospelov,et al. Secluded WIMP Dark Matter , 2007, 0711.4866.
[25] H. Hoekstra,et al. Weak Gravitational Lensing and Its Cosmological Applications , 2008, 0805.0139.
[26] Edinburgh,et al. Revealing the Properties of Dark Matter in the Merging Cluster MACS J0025.4–1222 , 2008, 0806.2320.
[27] Durham,et al. The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.
[28] Jonathan L. Feng,et al. Hidden charged dark matter , 2009, 0905.3039.
[29] A. Babul,et al. The relationship between substructure in 2D X-ray surface brightness images and weak-lensing mass maps of galaxy clusters: a simulation study , 2009, 0908.3201.
[30] M. Markevitch,et al. GAS SLOSHING AND BUBBLES IN THE GALAXY GROUP NGC 5098 , 2009, 0904.0610.
[31] J. Schaye,et al. Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.
[32] B. Qin,et al. Mass discrepancy in galaxy clusters as a result of the offset between dark matter and baryon distributions , 2010, 1006.3484.
[33] T. Kitching,et al. The dark matter of gravitational lensing , 2010, 1001.1739.
[34] Edward J. Wollack,et al. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.
[35] T. Kitching,et al. Cluster bulleticity: Cluster bulleticity , 2010, 1007.1924.
[36] A. Loeb,et al. Cores in dwarf galaxies from dark matter with a Yukawa potential. , 2010, Physical review letters.
[37] J. Rhodes,et al. Creation of cosmic structure in the complex galaxy cluster merger Abell 2744 , 2011, 1103.2772.
[38] L. Williams,et al. Light/mass offsets in the lensing cluster Abell 3827: evidence for collisional dark matter? , 2011, 1102.3943.
[39] D. Wittman,et al. DISCOVERY OF A DISSOCIATIVE GALAXY CLUSTER MERGER WITH LARGE PHYSICAL SEPARATION , 2011, 1110.4391.
[40] Sun Mi Chung,et al. ON DARK PEAKS AND MISSING MASS: A WEAK-LENSING MASS RECONSTRUCTION OF THE MERGING CLUSTER SYSTEM A520, , 2012, 1209.2143.
[41] M. Vogelsberger,et al. Subhaloes in self-interacting galactic dark matter haloes , 2012, 1201.5892.
[42] H. Hoekstra,et al. A STUDY OF THE DARK CORE IN A520 WITH THE HUBBLE SPACE TELESCOPE: THE MYSTERY DEEPENS , 2012, 1202.6368.
[43] T. Kitching,et al. Dark matter astrometry: accuracy of subhalo positions for the measurement of self-interaction cross-sections , 2013, 1305.2117.
[44] Astronomy,et al. Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure , 2012, 1208.3025.
[45] Annika H. G. Peter,et al. Cosmological simulations with self-interacting dark matter – II. Halo shapes versus observations , 2012, 1208.3026.
[46] Instituto de Fisica de Cantabria,et al. Statistics of extreme objects in the Juropa Hubble Volume simulation , 2013, 1305.1976.
[47] F. Kahlhoefer,et al. Colliding clusters and dark matter self-interactions , 2013, 1308.3419.