On the cross-section of dark matter using substructure infall into galaxy clusters

We develop a statistical method to measure the interaction cross-section of dark matter, exploiting the continuous minor merger events in which small substructures fall into galaxy clusters. We find that by taking the ratio of the distances between the galaxies and dark matter, and galaxies and gas in accreting subhaloes, we form a quantity that can be statistically averaged over a large sample of systems whilst removing any inherent line-of-sight projections. To interpret this ratio as a cross-section of dark matter, we derive an analytical description of subhalo infall allowing us to constrain self-interaction models in which drag is an appropriate macroscopic treatment. We create mock observations from cosmological simulations of structure formation and find that collisionless dark matter becomes physically separated from X-ray gas by up to ∼20 h−1 kpc. Adding realistic levels of noise, we are able to predict achievable constraints from observational data. Current archival data should be able to detect a difference in the dynamical behaviour of dark matter and standard model particles at 6σ, and measure the total interaction cross-section σ/m with 68 per cent confidence limits of ±1 cm2 g−1. We note that this method is not restricted by the limited number of major merging events and is easily extended to large samples of clusters from future surveys which could potentially push statistical errors to <0.1 cm2 g−1.

[1]  X-rays from the Coma cluster of galaxies , 1966 .

[2]  John Dubinski,et al.  The structure of cold dark matter halos , 1991 .

[3]  N. Kaiser,et al.  Mapping the dark matter with weak gravitational lensing , 1993 .

[4]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[5]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[6]  Weakly Self-interacting Dark Matter and the Structure of Dark Halos , 2000, astro-ph/0006134.

[7]  C. Firmani,et al.  Evidence of self-interacting cold dark matter from galactic to galaxy cluster scales , 2000, astro-ph/0002376.

[8]  Spergel,et al.  Observational evidence for self-interacting cold dark matter , 1999, Physical review letters.

[9]  H. M. P. Couchman,et al.  Smoothed Particle Hydrodynamics in cosmology: a comparative study of implementations , 2000 .

[10]  J. Ostriker,et al.  Limits on Collisional Dark Matter from Elliptical Galaxies in Clusters , 2000, astro-ph/0010436.

[11]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[12]  M. Meneghetti,et al.  Giant cluster arcs as a constraint on the scattering cross-section of dark matter , 2000, astro-ph/0011405.

[13]  J. Miralda-Escudé A Test of the Collisional Dark Matter Hypothesis from Cluster Lensing , 2000, astro-ph/0002050.

[14]  U. Florida,et al.  Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657–558: Direct Evidence for the Existence of Dark Matter , 2003, astro-ph/0312273.

[15]  A. Réfrégier Weak Gravitational Lensing by Large-Scale Structure , 2003, astro-ph/0307212.

[16]  UCSD,et al.  Direct Constraints on the Dark Matter Self-Interaction Cross Section from the Merging Galaxy Cluster 1E 0657–56 , 2004 .

[17]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[18]  Tucson,et al.  A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.

[19]  Tucson,et al.  Strong and Weak Lensing United. III. Measuring the Mass Distribution of the Merging Galaxy Cluster 1ES 0657–558 , 2006, astro-ph/0608408.

[20]  J. Monaghan,et al.  Fundamental differences between SPH and grid methods , 2006, astro-ph/0610051.

[21]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[22]  H. Hoekstra,et al.  A Dark Core in Abell 520 , 2007, 0706.3048.

[23]  J. Kneib,et al.  A Bayesian approach to strong lensing modelling of galaxy clusters , 2007, 0706.0048.

[24]  M. Pospelov,et al.  Secluded WIMP Dark Matter , 2007, 0711.4866.

[25]  H. Hoekstra,et al.  Weak Gravitational Lensing and Its Cosmological Applications , 2008, 0805.0139.

[26]  Edinburgh,et al.  Revealing the Properties of Dark Matter in the Merging Cluster MACS J0025.4–1222 , 2008, 0806.2320.

[27]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[28]  Jonathan L. Feng,et al.  Hidden charged dark matter , 2009, 0905.3039.

[29]  A. Babul,et al.  The relationship between substructure in 2D X-ray surface brightness images and weak-lensing mass maps of galaxy clusters: a simulation study , 2009, 0908.3201.

[30]  M. Markevitch,et al.  GAS SLOSHING AND BUBBLES IN THE GALAXY GROUP NGC 5098 , 2009, 0904.0610.

[31]  J. Schaye,et al.  Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.

[32]  B. Qin,et al.  Mass discrepancy in galaxy clusters as a result of the offset between dark matter and baryon distributions , 2010, 1006.3484.

[33]  T. Kitching,et al.  The dark matter of gravitational lensing , 2010, 1001.1739.

[34]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[35]  T. Kitching,et al.  Cluster bulleticity: Cluster bulleticity , 2010, 1007.1924.

[36]  A. Loeb,et al.  Cores in dwarf galaxies from dark matter with a Yukawa potential. , 2010, Physical review letters.

[37]  J. Rhodes,et al.  Creation of cosmic structure in the complex galaxy cluster merger Abell 2744 , 2011, 1103.2772.

[38]  L. Williams,et al.  Light/mass offsets in the lensing cluster Abell 3827: evidence for collisional dark matter? , 2011, 1102.3943.

[39]  D. Wittman,et al.  DISCOVERY OF A DISSOCIATIVE GALAXY CLUSTER MERGER WITH LARGE PHYSICAL SEPARATION , 2011, 1110.4391.

[40]  Sun Mi Chung,et al.  ON DARK PEAKS AND MISSING MASS: A WEAK-LENSING MASS RECONSTRUCTION OF THE MERGING CLUSTER SYSTEM A520, , 2012, 1209.2143.

[41]  M. Vogelsberger,et al.  Subhaloes in self-interacting galactic dark matter haloes , 2012, 1201.5892.

[42]  H. Hoekstra,et al.  A STUDY OF THE DARK CORE IN A520 WITH THE HUBBLE SPACE TELESCOPE: THE MYSTERY DEEPENS , 2012, 1202.6368.

[43]  T. Kitching,et al.  Dark matter astrometry: accuracy of subhalo positions for the measurement of self-interaction cross-sections , 2013, 1305.2117.

[44]  Astronomy,et al.  Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure , 2012, 1208.3025.

[45]  Annika H. G. Peter,et al.  Cosmological simulations with self-interacting dark matter – II. Halo shapes versus observations , 2012, 1208.3026.

[46]  Instituto de Fisica de Cantabria,et al.  Statistics of extreme objects in the Juropa Hubble Volume simulation , 2013, 1305.1976.

[47]  F. Kahlhoefer,et al.  Colliding clusters and dark matter self-interactions , 2013, 1308.3419.