Graphics for the Multivariate Two-Sample Problem

Abstract Some graphical methods for comparing multivariate samples are presented. These methods are based on minimal spanning tree techniques developed for multivariate two-sample tests. The utility of these methods is illustrated through examples using both real and artificial data.

[1]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[2]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[3]  Richard C. T. Lee,et al.  A Triangulation Method for the Sequential Mapping of Points from N-Space to Two-Space , 1977, IEEE Transactions on Computers.

[4]  Jerome H. Friedman,et al.  A Recursive Partitioning Decision Rule for Nonparametric Classification , 1977, IEEE Transactions on Computers.

[5]  R. Gnanadesikan,et al.  Probability plotting methods for the analysis for the analysis of data , 1968 .

[6]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[7]  H. Weinberger,et al.  Satellite Repeater Capacity for Two Carrier Level SCPC Operation , 1978, IEEE Trans. Commun..

[8]  John W. Sammon,et al.  An Optimal Discriminant Plane , 1970, IEEE Transactions on Computers.

[9]  R. Gnanadesikan,et al.  Probability plotting methods for the analysis of data. , 1968, Biometrika.

[10]  Juan E. Mezzich,et al.  A COMPARISON OF GRAPHICAL REPRESENTATIONS OF MULTIDIMENSIONAL PSYCHIATRIC DIAGNOSTIC DATA , 1978 .

[11]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[12]  J. Friedman,et al.  Multivariate generalizations of the Wald--Wolfowitz and Smirnov two-sample tests , 1979 .

[13]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.