Scaling properties of generalized Carlitz sequences of polynomials

We consider graphical representations of generalized Carlitz sequences of polynomials. These generalized Carlitz sequences are based on certain numeration systems of the natural numbers. We establish conditions under which a sequence of properly rescaled graphical representations converges to a limit (w.r.t. Hausdorff distance).

[1]  David Maier,et al.  Review of "Introduction to automata theory, languages and computation" by John E. Hopcroft and Jeffrey D. Ullman. Addison-Wesley 1979. , 1980, SIGA.

[2]  Heinz-Otto Peitgen,et al.  Self-Similar Structure of rescaled Evolution Sets of Cellular Automata I , 2001, Int. J. Bifurc. Chaos.

[3]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[4]  Stephen J. Willson,et al.  Cellular automata can generate fractals , 1984, Discret. Appl. Math..

[5]  Jorge Stolfi,et al.  Two methods for generating fractals , 1989, Comput. Graph..

[6]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[7]  Heinz-Otto Peitgen,et al.  On the fractal structure of the rescaled evolution set of Carlitz sequences of polynomials , 2000, Discret. Appl. Math..

[8]  Leonard Carlitz Congruence properties of the polynomials of Hermite, Laguerre and Legendre , 1953 .

[9]  André Barbé,et al.  Limit sets of automatic sequences , 2003 .

[10]  Stephen J. Willson,et al.  Calculating growth rates and moments for additive cellular automata , 1991, Discret. Appl. Math..

[11]  Heinz-Otto Peitgen,et al.  Pascal's triangle, dynamical systems and attractors , 1992, Ergodic Theory and Dynamical Systems.

[12]  André Barbé ON A CLASS OF FRACTAL MATRICES III: LIMIT STRUCTURES AND HIERARCHICAL ITERATED FUNCTION SYSTEMS , 1995 .

[13]  Jean-Paul Allouche,et al.  Schur congruences, Carlitz sequences of polynomials and automaticity , 2000, Discret. Math..

[14]  Heinz-Otto Peitgen,et al.  Fractal Patterns in Gaussian and Stirling Number Tables , 1998, Ars Comb..

[15]  Satoshi Takahashi,et al.  Self-Similarity of Linear Cellular Automata , 1992, J. Comput. Syst. Sci..

[16]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[17]  Aviezri S. Fraenkel,et al.  Systems of numeration , 1983, IEEE Symposium on Computer Arithmetic.