Scaling properties of generalized Carlitz sequences of polynomials
暂无分享,去创建一个
[1] David Maier,et al. Review of "Introduction to automata theory, languages and computation" by John E. Hopcroft and Jeffrey D. Ullman. Addison-Wesley 1979. , 1980, SIGA.
[2] Heinz-Otto Peitgen,et al. Self-Similar Structure of rescaled Evolution Sets of Cellular Automata I , 2001, Int. J. Bifurc. Chaos.
[3] M. Lothaire. Algebraic Combinatorics on Words , 2002 .
[4] Stephen J. Willson,et al. Cellular automata can generate fractals , 1984, Discret. Appl. Math..
[5] Jorge Stolfi,et al. Two methods for generating fractals , 1989, Comput. Graph..
[6] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[7] Heinz-Otto Peitgen,et al. On the fractal structure of the rescaled evolution set of Carlitz sequences of polynomials , 2000, Discret. Appl. Math..
[8] Leonard Carlitz. Congruence properties of the polynomials of Hermite, Laguerre and Legendre , 1953 .
[9] André Barbé,et al. Limit sets of automatic sequences , 2003 .
[10] Stephen J. Willson,et al. Calculating growth rates and moments for additive cellular automata , 1991, Discret. Appl. Math..
[11] Heinz-Otto Peitgen,et al. Pascal's triangle, dynamical systems and attractors , 1992, Ergodic Theory and Dynamical Systems.
[12] André Barbé. ON A CLASS OF FRACTAL MATRICES III: LIMIT STRUCTURES AND HIERARCHICAL ITERATED FUNCTION SYSTEMS , 1995 .
[13] Jean-Paul Allouche,et al. Schur congruences, Carlitz sequences of polynomials and automaticity , 2000, Discret. Math..
[14] Heinz-Otto Peitgen,et al. Fractal Patterns in Gaussian and Stirling Number Tables , 1998, Ars Comb..
[15] Satoshi Takahashi,et al. Self-Similarity of Linear Cellular Automata , 1992, J. Comput. Syst. Sci..
[16] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[17] Aviezri S. Fraenkel,et al. Systems of numeration , 1983, IEEE Symposium on Computer Arithmetic.