Two-Dimensional Transition Metal Disulfides for Chemoresistive Gas Sensing: Perspective and Challenges

Transition metal disulfides have been attracting significant attentions in recent years. There are extensive applications of transition metal disulfides, especially on gas sensing applications, due to their large specific surface-to-volume ratios, high sensitivity to adsorption of gas molecules and tunable surface functionality depending on the decoration species or functional groups. However, there are several drawbacks such as poor gas selectivity, sluggish recovery characteristics and difficulty in the fabrication of large-scale devices. Here, we provide a review of recent progress on the chemoresistive gas sensing properties of two-dimensional transition metal disulfides. This review also provides various methods to enhance the gas sensing performance of two-dimensional disulfides, such as surface functionalization, decoration receptor functions and developing nanostructures.

[1]  Jian Zhang,et al.  Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors , 2006 .

[2]  Byoung Hun Lee,et al.  Charge-transfer-based Gas Sensing Using Atomic-layer MoS2 , 2015, Scientific Reports.

[3]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[4]  Ho Won Jang,et al.  One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues , 2010, Sensors.

[5]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[6]  J. H. Lee,et al.  Gas sensors using hierarchical and hollow oxide nanostructures: Overview , 2009 .

[7]  C. Julien,et al.  Optical and electrical characterizations of SnSe, SnS2 and SnSe2 single crystals , 1992 .

[8]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[9]  Kengo Shimanoe,et al.  Contribution of electron tunneling transport in semiconductor gas sensor , 2007 .

[10]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[11]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[12]  Ho Won Jang,et al.  Trimodally porous SnO2 nanospheres with three-dimensional interconnectivity and size tunability: a one-pot synthetic route and potential application as an extremely sensitive ethanol detector , 2016 .

[13]  Liqiong Wu,et al.  Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. , 2011, ACS nano.

[14]  Ho Won Jang,et al.  Ultrasensitive reversible oxygen sensing by using liquid-exfoliated MoS2 nanoparticles , 2016 .

[15]  Kangho Lee,et al.  Plasma assisted synthesis of WS2 for gas sensing applications , 2014 .

[16]  K. K. Singh,et al.  Two-Dimensional Materials for Sensing: Graphene and Beyond , 2015 .

[17]  C. Xie,et al.  Interface Bonds Determined Gas-Sensing of SnO2-SnS2 Hybrids to Ammonia at Room Temperature. , 2015, ACS applied materials & interfaces.

[18]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[19]  B. L. Evans,et al.  Temperature dependence of the electrical conductivity and hall coefficient in 2H‐MoS2, MoSe2, WSe2, and MoTe2 , 1977 .

[20]  Makoto Egashira,et al.  Basic Aspects and Challenges of Semiconductor Gas Sensors , 1999 .

[21]  Ho Won Jang,et al.  Vertically ordered SnO2 nanobamboos for substantially improved detection of volatile reducing gases , 2015 .

[22]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[23]  Younan Xia,et al.  Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process , 2008 .

[24]  I-Cherng Chen,et al.  Laterally grown ZnO nanowire ethanol gas sensors , 2007 .

[25]  Kengo Shimanoe,et al.  Diffusion equation-based study of thin film semiconductor gas sensor-response transient , 2002 .

[26]  Hua Zhang,et al.  Metal Dichalcogenide Nanosheets: Preparation, Properties and Applications , 2013 .

[27]  Zhongqing Wei,et al.  Reduced graphene oxide molecular sensors. , 2008, Nano letters.

[28]  Zhiyuan Zeng,et al.  An effective method for the fabrication of few-layer-thick inorganic nanosheets. , 2012, Angewandte Chemie.

[29]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  F. M. Peeters,et al.  Adsorption of H 2 O , N H 3 , CO, N O 2 , and NO on graphene: A first-principles study , 2007, 0710.1757.

[31]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[32]  Kengo Shimanoe,et al.  Roles of Shape and Size of Component Crystals in Semiconductor Gas Sensors I. Response to Oxygen , 2008 .

[33]  Y. J. Chen,et al.  Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods , 2005 .

[34]  Kengo Shimanoe,et al.  Roles of Shape and Size of Component Crystals in Semiconductor Gas Sensors , 2008 .

[35]  Ho Won Jang,et al.  Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production , 2016 .

[36]  Bin Liu,et al.  Sensing behavior of atomically thin-layered MoS2 transistors. , 2013, ACS nano.

[37]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[38]  Jahyun Koo,et al.  Improvement of Gas-Sensing Performance of Large-Area Tungsten Disulfide Nanosheets by Surface Functionalization. , 2016, ACS nano.

[39]  Wojtek Wlodarski,et al.  Physisorption-Based Charge Transfer in Two-Dimensional SnS2 for Selective and Reversible NO2 Gas Sensing. , 2015, ACS nano.

[40]  R. H. Tredgold,et al.  Electrical and photoconductive properties of SnS2 crystals , 1971 .

[41]  Chongwu Zhou,et al.  High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. , 2014, ACS nano.

[42]  Takashi Taniguchi,et al.  Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. , 2014, ACS nano.

[43]  Sun-Woo Choi,et al.  NO2-sensing performance of SnO2 microrods by functionalization of Ag nanoparticles , 2013 .

[44]  Kangho Lee,et al.  High‐Performance Sensors Based on Molybdenum Disulfide Thin Films , 2013, Advanced materials.

[45]  Melanie Swan,et al.  Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the Quantified Self 2.0 , 2012, J. Sens. Actuator Networks.

[46]  Y. J. Chen,et al.  Low-resistance gas sensors fabricated from multiwalled carbon nanotubes coated with a thin tin oxide layer , 2004 .

[47]  Geoffrey A. Ozin,et al.  Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors , 2001 .

[48]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.

[49]  Jing Wang,et al.  WS2 nanoflakes based selective ammonia sensors at room temperature , 2017 .

[50]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[51]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[52]  Ho Won Jang,et al.  Synergetically Selective Toluene Sensing in Hematite‐Decorated Nickel Oxide Nanocorals , 2017 .

[53]  Limin Jin,et al.  Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals , 2013, Scientific Reports.

[54]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[55]  Wilman Tsai,et al.  Chloride molecular doping technique on 2D materials: WS2 and MoS2. , 2014, Nano letters.

[56]  T. Zhai,et al.  Two-dimensional layered nanomaterials for gas-sensing applications , 2016 .

[57]  Yong Xu,et al.  The absolute energy positions of conduction and valence bands of selected semiconducting minerals , 2000 .

[58]  Jing Wang,et al.  Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor , 2017 .

[59]  J. Nørskov,et al.  One-dimensional metallic edge states in MoS2. , 2001, Physical review letters.

[60]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[61]  B. H. Weiller,et al.  Practical chemical sensors from chemically derived graphene. , 2009, ACS nano.

[62]  Boris I. Yakobson,et al.  Vapor Phase Growth and Grain Boundary Structure of Molybdenum Disulfide Atomic Layers , 2013 .

[63]  Tongtong Wang,et al.  Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications , 2005 .

[64]  Qiyuan He,et al.  TaS2 nanosheet-based room-temperature dosage meter for nitric oxide , 2014 .

[65]  Kengo Shimanoe,et al.  Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor , 2001 .

[66]  Kengo Shimanoe,et al.  New perspectives of gas sensor technology , 2009 .

[67]  Ho Won Jang,et al.  Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. , 2013, Nanoscale.

[68]  Ho Won Jang,et al.  Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending. , 2015, ACS nano.

[69]  Ho Won Jang,et al.  A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose. , 2013, The Analyst.

[70]  J. Myoung,et al.  Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. , 2013, ACS nano.

[71]  Ho Won Jang,et al.  Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting , 2015, Electronic Materials Letters.

[72]  Anran Liu,et al.  High‐Performance NO2 Sensors Based on Chemically Modified Graphene , 2013, Advanced materials.

[73]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[74]  Z. Yin,et al.  Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets. , 2014, Accounts of chemical research.