Effect of amorphous complexions on plastic deformation of nanolayered composites

[1]  Shijian Zheng,et al.  Dependence of Plastic Stability on 3D Interface Layer in Nanolaminated Materials , 2022, Acta Metallurgica Sinica (English Letters).

[2]  P. Liaw,et al.  Enhancing strength and ductility via crystalline-amorphous nanoarchitectures in TiZr-based alloys , 2022, Science advances.

[3]  Jiangwei Wang,et al.  Hardening induced by dislocation core spreading at disordered interface in Cu/Nb multilayers , 2021, Scripta Materialia.

[4]  J. Baldwin,et al.  Effects of three-dimensional Cu/Nb interfaces on strengthening and shear banding in nanoscale metallic multilayers , 2020 .

[5]  Ruifeng Zhang,et al.  Effects of solutes on dislocation nucleation and interface sliding of bimetal semi-coherent interface , 2020 .

[6]  T. Germann,et al.  Interface facilitated transformation of voids directly into stacking fault tetrahedra , 2020 .

[7]  B. N. Yao,et al.  AADIS: An atomistic analyzer for dislocation character and distribution , 2020, Comput. Phys. Commun..

[8]  S. H. Zhang,et al.  First-principles design of strong solids: Approaches and applications , 2019, Physics Reports.

[9]  T. Germann,et al.  Stronger and more failure-resistant with three-dimensional serrated bimetal interfaces , 2019, Acta Materialia.

[10]  P. Huang,et al.  Effects of size and amorphous layer structure on the strength and plasticity of Cu/CuZr nanolaminates , 2018, Materials Science and Engineering: A.

[11]  T. Germann,et al.  Effect of dynamic evolution of misfit dislocation pattern on dislocation nucleation and shear sliding at semi-coherent bimetal interfaces , 2018 .

[12]  Fei Wang,et al.  Plastic deformation behaviors of amorphous-Cu50Zr50/crystalline-Cu nanolaminated structures by molecular dynamics simulations , 2017 .

[13]  S. H. Zhang,et al.  Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps , 2016 .

[14]  Xianping Wang,et al.  High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding , 2016 .

[15]  Wenjun Zhu,et al.  Plastic deformation due to interfacial sliding in amorphous/crystalline nanolaminates , 2015 .

[16]  Xiang-Yang Liu,et al.  Layer size effect on the shock compression behavior of fcc–bcc nanolaminates , 2014 .

[17]  Gang Liu,et al.  Self-toughening crystalline Cu/amorphous Cu–Zr nanolaminates: Deformation-induced devitrification , 2014 .

[18]  E. Cerreta,et al.  Deformation and failure of shocked bulk Cu–Nb nanolaminates , 2014 .

[19]  Blas P. Uberuaga,et al.  Radiation damage tolerant nanomaterials , 2013 .

[20]  Y. Liu,et al.  Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: an in situ study , 2013 .

[21]  G. Liu,et al.  Crystallization-aided extraordinary plastic deformation in nanolayered crystalline Cu/amorphous Cu-Zr micropillars , 2013, Scientific Reports.

[22]  I. Beyerlein,et al.  High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces , 2013, Nature Communications.

[23]  Jian Wang,et al.  Atomic-scale study of nucleation of dislocations from fcc–bcc interfaces , 2012 .

[24]  J. Hirth,et al.  Slip transmission across fcc/bcc interfaces with varying interface shear strengths , 2012 .

[25]  T. Germann,et al.  Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces , 2011 .

[26]  R. Hoagland,et al.  The influence of interface shear strength on the glide dislocation–interface interactions , 2011 .

[27]  H. Zbib,et al.  Strength and strain hardening behavior of Cu-based bilayers and trilayers , 2011 .

[28]  M. Moshksar,et al.  High-strength and high-conductive Cu/Ag multilayer produced by ARB , 2010 .

[29]  M. Demkowicz,et al.  Simulations of Collision Cascades in Cu–Nb Layered Composites Using an EAM Interatomic Potential , 2009 .

[30]  K. Aifantis Interfaces in crystalline materials , 2009 .

[31]  J. Hirth,et al.  Atomistic modeling of the interaction of glide dislocations with “weak” interfaces , 2008 .

[32]  J. Hirth,et al.  Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces , 2008 .

[33]  Ju Li,et al.  Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations , 2007 .

[34]  A. Hamza,et al.  Ductile crystalline–amorphous nanolaminates , 2007, Proceedings of the National Academy of Sciences.

[35]  Ting Zhu,et al.  Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals , 2007, Proceedings of the National Academy of Sciences.

[36]  Pekka Koskinen,et al.  Structural relaxation made simple. , 2006, Physical review letters.

[37]  C. Maloney,et al.  Amorphous systems in athermal, quasistatic shear. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Amit Misra,et al.  Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites , 2005 .

[39]  Luigi Grippo,et al.  A globally convergent version of the Polak-Ribière conjugate gradient method , 1997, Math. Program..

[40]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[41]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .