Combining multiple clusterings using evidence accumulation

We explore the idea of evidence accumulation (EAC) for combining the results of multiple clusterings. First, a clustering ensemble - a set of object partitions, is produced. Given a data set (n objects or patterns in d dimensions), different ways of producing data partitions are: 1) applying different clustering algorithms and 2) applying the same clustering algorithm with different values of parameters or initializations. Further, combinations of different data representations (feature spaces) and clustering algorithms can also provide a multitude of significantly different data partitionings. We propose a simple framework for extracting a consistent clustering, given the various partitions in a clustering ensemble. According to the EAC concept, each partition is viewed as an independent evidence of data organization, individual data partitions being combined, based on a voting mechanism, to generate a new n × n similarity matrix between the n patterns. The final data partition of the n patterns is obtained by applying a hierarchical agglomerative clustering algorithm on this matrix. We have developed a theoretical framework for the analysis of the proposed clustering combination strategy and its evaluation, based on the concept of mutual information between data partitions. Stability of the results is evaluated using bootstrapping techniques. A detailed discussion of an evidence accumulation-based clustering algorithm, using a split and merge strategy based on the k-means clustering algorithm, is presented. Experimental results of the proposed method on several synthetic and real data sets are compared with other combination strategies, and with individual clustering results produced by well-known clustering algorithms.

[1]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[2]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[3]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[4]  Ray A. Jarvis,et al.  Clustering Using a Similarity Measure Based on Shared Near Neighbors , 1973, IEEE Transactions on Computers.

[5]  David G. Stork,et al.  Pattern Classification , 1973 .

[6]  Brian Everitt,et al.  Cluster analysis , 1974 .

[7]  Anil K. Jain,et al.  Clustering techniques: The user's dilemma , 1976, Pattern Recognit..

[8]  Anil K. Jain,et al.  Validity studies in clustering methodologies , 1979, Pattern Recognit..

[9]  Richard C. Dubes,et al.  Cluster validity profiles , 1982, Pattern Recognit..

[10]  Behrooz Kamgar-Parsi,et al.  An improved branch and bound algorithm for computing k-nearest neighbors , 1985, Pattern Recognit. Lett..

[11]  Anil K. Jain,et al.  Bootstrap technique in cluster analysis , 1987, Pattern Recognit..

[12]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[13]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[14]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[15]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[16]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[17]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[18]  Isak Gath,et al.  Detection and Separation of Ring-Shaped Clusters Using Fuzzy Clustering , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[21]  Victor L. Brailovsky,et al.  Probabilistic validation approach for clustering , 1995, Pattern Recognit. Lett..

[22]  Anil K. Jain,et al.  Large-scale parallel data clustering , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[23]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Adrian E. Raftery,et al.  Principal Curve Clustering With Noise , 1997 .

[25]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Peng-Yeng Yin Algorithms for straight line fitting using k-means , 1998, Pattern Recognit. Lett..

[27]  Adrian E. Raftery,et al.  How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis , 1998, Comput. J..

[28]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Mineichi Kudo,et al.  MDL-Based Selection of the Number of Components in Mixture Models for Pattern Classification , 1998, SSPR/SPR.

[30]  Eric J. Pauwels,et al.  Finding regions of interest for content extraction , 1998, Electronic Imaging.

[31]  Sudipto Guha,et al.  CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.

[32]  Mohamed A. Ismail,et al.  On-line hierarchical clustering , 1998, Pattern Recognit. Lett..

[33]  Narendra Ahuja,et al.  Location- and Density-Based Hierarchical Clustering Using Similarity Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Marie Chavent,et al.  A monothetic clustering method , 1998, Pattern Recognit. Lett..

[35]  Jitender S. Deogun,et al.  Conceptual clustering in information retrieval , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[36]  William D. Penny,et al.  Bayesian Approaches to Gaussian Mixture Modeling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Ravi Kothari,et al.  On finding the number of clusters , 1999, Pattern Recognit. Lett..

[38]  George Karypis,et al.  C HAMELEON : A Hierarchical Clustering Algorithm Using Dynamic Modeling , 1999 .

[39]  A. Fred,et al.  A Comparative Study of String Dissimilarity Measures in Structural Clustering , 1999 .

[40]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[41]  Daniel P. Fasulo,et al.  An Analysis of Recent Work on Clustering Algorithms , 1999 .

[42]  A. Leonardis,et al.  Vector Quantization and Minimum Description Length , 1999 .

[43]  Eric W. Tyree,et al.  The use of linked line segments for cluster representation and data reduction , 1999, Pattern Recognit. Lett..

[44]  Vipin Kumar,et al.  Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.

[45]  Hichem Frigui,et al.  A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Joachim M. Buhmann,et al.  Unsupervised Learning without Overfitting: Empirical Risk Approximation as an Induction Principle for Reliable Clustering , 1999 .

[47]  Thomas G. Dietterich Ensemble Methods in Machine Learning , 2000, Multiple Classifier Systems.

[48]  Adrian E. Raftery,et al.  Finding Curvilinear Features in Spatial Point Patterns: Principal Curve Clustering with Noise , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Ana L. N. Fred,et al.  Clustering under a hypothesis of smooth dissimilarity increments , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[50]  Louisa Lam,et al.  Classifier Combinations: Implementations and Theoretical Issues , 2000, Multiple Classifier Systems.

[51]  Joachim M. Buhmann,et al.  Path Based Pairwise Data Clustering with Application to Texture Segmentation , 2001, EMMCVPR.

[52]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[53]  Ana L. N. Fred,et al.  Finding Consistent Clusters in Data Partitions , 2001, Multiple Classifier Systems.

[54]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[55]  Nello Cristianini,et al.  Spectral Kernel Methods for Clustering , 2001, NIPS.

[56]  Ana L. N. Fred,et al.  Evidence Accumulation Clustering Based on the K-Means Algorithm , 2002, SSPR/SPR.

[57]  Levent Ertoz,et al.  A New Shared Nearest Neighbor Clustering Algorithm and its Applications , 2002 .

[58]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[60]  Ana L. N. Fred Clustering based on Dissimilarity First Derivatives , 2002, PRIS.

[61]  Ana L. N. Fred,et al.  Data clustering using evidence accumulation , 2002, Object recognition supported by user interaction for service robots.

[62]  José Carlos Príncipe,et al.  Information Theoretic Clustering , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  Boris G. Mirkin,et al.  Concept Learning and Feature Selection Based on Square-Error Clustering , 1999, Machine Learning.

[64]  Claudio Carpineto,et al.  A lattice conceptual clustering system and its application to browsing retrieval , 2004, Machine Learning.

[65]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[66]  Sergios Theodoridis,et al.  Pattern Recognition, Third Edition , 2006 .