Low-noise AlInAsSb avalanche photodiode

We report low-noise avalanche gain from photodiodes composed of a previously uncharacterized alloy, Al0.7In0.3As0.3Sb0.7, grown on GaSb. The bandgap energy and thus the cutoff wavelength are similar to silicon; however, since the bandgap of Al0.7In0.3As0.3Sb0.7 is direct, its absorption depth is 5 to 10 times shorter than indirect-bandgap silicon, potentially enabling significantly higher operating bandwidths. In addition, unlike other III-V avalanche photodiodes that operate in the visible or near infrared, the excess noise factor is comparable to or below that of silicon, with a k-value of approximately 0.015. Furthermore, the wide array of absorber regions compatible with GaSb substrates enable cutoff wavelengths ranging from 1 μm to 12 μm.

[1]  G. Macfarlane,et al.  FINE STRUCTURE IN THE ABSORPTION-EDGE SPECTRUM OF SI , 1957 .

[2]  V. A. Solov'ev,et al.  Molecular beam epitaxy of AlInAsSb alloys near the miscibility gap boundary , 2005 .

[3]  Metamorphic InAsSb/AlInAsSb heterostructures for optoelectronic applications , 2013 .

[4]  E. Kane,et al.  Energy band structure in p-type germanium and silicon , 1956 .

[5]  Joe C. Campbell,et al.  Thin multiplication region InAlAs homojunction avalanche photodiodes , 1998 .

[6]  Chee Hing Tan,et al.  Extremely Low Excess Noise in InAs Electron Avalanche Photodiodes , 2009, IEEE Photonics Technology Letters.

[7]  L. Faraone,et al.  Adaptive focal plane array (AFPA) technologies for integrated infrared microsystems , 2006, SPIE Defense + Commercial Sensing.

[8]  C. R. Crowell,et al.  Ionization coefficients in semiconductors: A nonlocalized property , 1974 .

[9]  Luke F. Lester,et al.  Type I mid-infrared MQW lasers using AlInAsSb barriers and InAsSb wells , 2005, SPIE OPTO.

[10]  Luke F. Lester,et al.  Characterization of AlInAsSb and AlGaInAsSb MBE-grown Digital Alloys , 2002 .

[11]  Mark Entwistle,et al.  InP-Based Single-Photon Detectors and Geiger-Mode APD Arrays for Quantum Communications Applications , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  Joe C. Campbell,et al.  Advances in photodetectors , 2008 .

[13]  R. C. Tozer,et al.  Low avalanche noise characteristics in thin InP p/sup +/-i-n/sup +/ diodes with electron initiated multiplication , 1999, IEEE Photonics Technology Letters.

[14]  C. Tan,et al.  Low Noise Avalanche Photodiodes Incorporating a 40 nm AlAsSb Avalanche Region , 2012, IEEE Journal of Quantum Electronics.

[15]  AlInAsSb for M-LWIR detectors , 2015 .

[16]  J. Campbell,et al.  Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping , 2012 .

[17]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise double-carrier-multiplication avalanche photodiodes , 1992, Optical Society of America Annual Meeting.

[18]  Seth R. Bank,et al.  Broadly Tunable AlInAsSb Digital Alloys Grown on GaSb , 2016 .

[19]  R. B. Emmons,et al.  Avalanche‐Photodiode Frequency Response , 1967 .

[20]  J. Bowers,et al.  Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product , 2009 .

[21]  Sethumadhavan Chandrasekhar,et al.  Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes , 1989 .

[22]  Alberto Tosi,et al.  Low-Noise, Low-Jitter, High Detection Efficiency InGaAs/InP Single-Photon Avalanche Diode , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[24]  R. Baertsch Noise and Multiplication Measurements in InSb Avalanche Photodiodes , 1967 .