STABLE SPECTRAL METHODS FOR CONSERVATION LAWS ON TRIANGLES WITH UNSTRUCTURED GRIDS
暂无分享,去创建一个
[1] George Em Karniadakis,et al. A triangular spectral element method; applications to the incompressible Navier-Stokes equations , 1995 .
[2] Jan S. Hesthaven,et al. A Stable Penalty Method for the Compressible Navier-Stokes Equations: III. Multidimensional Domain Decomposition Schemes , 1998, SIAM J. Sci. Comput..
[3] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[4] Ivo Babuška,et al. The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron , 1995 .
[5] Ivo Babuška,et al. The p - and h-p version of the finite element method, an overview , 1990 .
[6] Moshe Dubiner. Spectral methods on triangles and other domains , 1991 .
[7] A. Patera. A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .
[8] Ivo Babuška,et al. Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle , 1995 .
[9] Jan S. Hesthaven,et al. A Stable Penalty Method for the Compressible Navier-Stokes Equations: I. Open Boundary Conditions , 1996, SIAM J. Sci. Comput..
[10] David Gottlieb,et al. Spectral Methods on Arbitrary Grids , 1995 .
[11] Jan S. Hesthaven,et al. From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .
[12] K. Chung,et al. On Lattices Admitting Unique Lagrange Interpolations , 1977 .