Tracking Atmospheric Instabilities with the Kalman Filter. Part 1: Methodology and One-Layer Resultst

Abstract Sequential data assimilation schemes approaching true optimality for sizable atmospheric models are becoming a reality. The behavior of the Kalman filter (KF) under difficult conditions needs therefore to be understood. In this two-part paper we implement a KF for a two-dimensional shallow-water model, with one or two layers. The model is linearized about a basic flow that depends on latitude; this permits the one-layer (1-L) case to be barotropically unstable. Constant vertical shear in the two-layer (2-L) case induces baroclinic instability. A model-error covariance matrix for the KF simulations is constructed based on the hypothesis that an ensemble of slow modes dominates the errors. In the 1-L case, the system is stable for a meridionally constant basic flow. Assuming equipartition of energy in the construction of the model-error covariance matrix has a deleterious effect on the process of data assimilation in both the stable and unstable cases. Estimation errors are found to be smaller for ...