Fusion Techniques for Reliable Information: A Survey

Information fused by multi-sensors is an important factor for obtaining reliable contextual information in smart spaces which use the pervasive and ubiquitous computing techniques. Adaptive fusion improves robust operational system performances then makes a reliable decision by reducing uncertain information. However, these fusion techniques suffer from problems regarding the accuracy of estimation or inference. No commonly accepted approaches exist currently. In this survey, we introduce the advantages and disadvantages of fusion techniques which can be used in specific applications. Second, we categorize well-known models, algorithms, systems, and applications depending on the proposed approaches. Finally, we discuss the related issues for fusion techniques within the smart spaces then suggest research directions for improving the decision-making in uncertain situation.

[1]  Yunmin Zhu,et al.  An efficient algorithm for optimal linear estimation fusion in distributed multisensor systems , 2006, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[2]  Ning Xiong,et al.  Multi-sensor management for information fusion: issues and approaches , 2002, Inf. Fusion.

[3]  Sérgio Cavalcante,et al.  An extended approach for Dempster-Shafer theory , 2003, Proceedings Fifth IEEE Workshop on Mobile Computing Systems and Applications.

[4]  Alfons Schuster,et al.  Intelligent Computing Everywhere , 2007 .

[5]  Li-Chen Fu,et al.  Creating Robust Activity Maps Using Wireless Sensor Network in a Smart Home , 2007, 2007 IEEE International Conference on Automation Science and Engineering.

[6]  James Llinas,et al.  Revisiting the JDL Data Fusion Model II , 2004 .

[7]  PradeHenri,et al.  Possibility Theory, Probability Theory and Multiple-Valued Logics , 2001 .

[8]  Vijay K. Garg,et al.  Fusible Data Structures for Fault-Tolerance , 2007, ICDCS.

[9]  Gerd Gigerenzer,et al.  Putting naturalistic decision making into the adaptive toolbox , 2001 .

[10]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[11]  Didier Dubois,et al.  Possibility Theory, Probability Theory and Multiple-Valued Logics: A Clarification , 2001, Annals of Mathematics and Artificial Intelligence.

[12]  S. Mohammed,et al.  Cognitive Diversity and Consensus in Group Decision Making: The Role of Inputs, Processes, and Outcomes. , 2001, Organizational behavior and human decision processes.

[13]  Pravin Varaiya,et al.  Distributed Online Simultaneous Fault Detection for Multiple Sensors , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[14]  Ramez Elmasri,et al.  A classification and modeling of the quality of contextual information in smart spaces , 2009, 2009 IEEE International Conference on Pervasive Computing and Communications.

[15]  Patrick Pérez,et al.  Data fusion for visual tracking with particles , 2004, Proceedings of the IEEE.

[16]  Lawrence O. Hall,et al.  Using classifier ensembles to label spatially disjoint data , 2008, Inf. Fusion.

[17]  Lloyd A. Treinish Visual data fusion for applications of high-resolution numerical weather prediction , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[18]  Xiaodong Wang,et al.  Joint multiple target tracking and classification in collaborative sensor networks , 2005, IEEE Journal on Selected Areas in Communications.

[19]  John Quiggin,et al.  Regret theory with general choice sets , 1994 .

[20]  R. Polikar,et al.  Multiple classifier systems for multisensor data fusion , 2006, Proceedings of the 2006 IEEE Sensors Applications Symposium, 2006..

[21]  T. Yoneyama,et al.  Learning bayesian networks for fault detection , 2004, Proceedings of the 2004 14th IEEE Signal Processing Society Workshop Machine Learning for Signal Processing, 2004..

[22]  Anne-Claire Boury-Brisset,et al.  Exploitation of a priori knowledge for information fusion , 2006, Inf. Fusion.

[23]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[24]  Pierre Valin,et al.  Data Fusion for Situation Monitoring, Incident Detection, Alert and Response Management , 2005 .

[25]  Hyeong-Ah Choi,et al.  Adaptive optimization of join trees for multi-join queries over sensor streams , 2008, Inf. Fusion.

[26]  Danail Stoyanov,et al.  Ambient and Wearable Sensor Fusion for Activity Recognition in Healthcare Monitoring Systems , 2007, BSN.

[27]  Gülçin Büyüközkan,et al.  A two phase multi-attribute decision-making approach for new product introduction , 2007, Inf. Sci..

[28]  Xin Yao,et al.  Diversity creation methods: a survey and categorisation , 2004, Inf. Fusion.

[29]  Xia Zhao,et al.  Designing strategy for multi-agent system based large structural health monitoring , 2008, Expert Syst. Appl..

[30]  Claudette Cayrol,et al.  Management of Preferences in Assumption-Based Reasoning , 1992, IPMU.

[31]  Andrew Starr,et al.  A Review of data fusion models and architectures: towards engineering guidelines , 2005, Neural Computing & Applications.

[32]  Hong Xu Valuation-based systems for decision analysis using belief functions , 1997, Decis. Support Syst..

[33]  Galina L. Rogova,et al.  Reliability In Information Fusion : Literature Survey , 2004 .

[34]  T. Riedel,et al.  S2B2: Blackboard for Transparent Data and Control Access in Heterogeneous Sensing Systems , 2007, 2007 Fourth International Conference on Networked Sensing Systems.

[35]  Sonya A. H. McMullen,et al.  Mathematical Techniques in Multisensor Data Fusion (Artech House Information Warfare Library) , 2004 .

[36]  Lawrence D. Stone,et al.  Bayesian Multiple Target Tracking , 1999 .

[37]  Gerald Schaefer,et al.  Registration and fusion of multi-sensor data using multiple agents , 2005, SPIE OPTO-Ireland.

[38]  E. Blasch,et al.  Assembling a distributed fused information-based human-computer cognitive decision making tool , 2000, IEEE Aerospace and Electronic Systems Magazine.

[39]  Yunmin Zhu,et al.  Extended Dempster-Shafer combination rules based on random set theory , 2004, SPIE Defense + Commercial Sensing.

[40]  Stavri G. Nikolov,et al.  Image fusion: Advances in the state of the art , 2007, Inf. Fusion.

[41]  Kenneth Baclawski,et al.  Formalization of Situation Awareness , 2003 .

[42]  Richa Singh,et al.  Quality-augmented fusion of level-2 and level-3 fingerprint information using DSm theory , 2009, Int. J. Approx. Reason..

[43]  Anthony G. Constantinides,et al.  Data Fusion for Modern Engineering Applications: An Overview , 2005, ICANN.

[44]  Amihai Motro,et al.  Fusionplex: resolution of data inconsistencies in the integration of heterogeneous information sources , 2006, Inf. Fusion.

[45]  Xiaohong Yuan,et al.  Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory , 2007, Inf. Fusion.

[46]  Ramez Elmasri,et al.  Sensor Data Fusion Using DSm Theory for Activity Recognition under Uncertainty in Home-Based Care , 2009, 2009 International Conference on Advanced Information Networking and Applications.

[47]  Ren C. Luo,et al.  Multisensor fusion and integration: approaches, applications, and future research directions , 2002 .

[48]  Wang Juan,et al.  Application of Information Fusion Technology in the Remote State On-line Monitoring and Fault Diagnosing System for Power Transformer , 2007, 2007 8th International Conference on Electronic Measurement and Instruments.

[49]  Alan Bundy Incidence calculus: A mechanism for probabilistic reasoning , 2004, Journal of Automated Reasoning.

[50]  Ramez Elmasri,et al.  A dynamic evidential network for multisensor context reasoning in home-based care , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[51]  I. R. Goodman,et al.  Mathematics of Data Fusion , 1997 .

[52]  Christophe Osswald,et al.  Toward a combination rule to deal with partial conflict and specificity in belief functions theory , 2007, 2007 10th International Conference on Information Fusion.

[53]  O. Colot,et al.  Identical foundation of probability theory and fuzzy set theory , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[54]  R. R. Murphy,et al.  Learning the expected utility of sensors and algorithms , 1994, Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems.

[55]  Yu Min,et al.  Data fusion in distributed multi-sensor system , 2004 .

[56]  Jie Yang,et al.  Sensor Fusion Using Dempster-Shafer Theory , 2002 .

[57]  D. Lewis Probabilities of Conditionals and Conditional Probabilities , 1976 .

[58]  M. Beynon,et al.  The Dempster-Shafer theory of evidence: an alternative approach to multicriteria decision modelling , 2000 .

[59]  Gee Wah Ng,et al.  Sensor management - what, why and how , 2000, Inf. Fusion.

[60]  Jean Dezert,et al.  An Introduction to the DSm Theory for the Combination of Paradoxical, Uncertain, and Imprecise Sources of Information , 2006, ArXiv.

[61]  Belur V. Dasarathy Information fusion benefits delineation in off-nominal scenarios , 1999, Defense, Security, and Sensing.

[62]  Kagan Tumer,et al.  Classifier ensembles: Select real-world applications , 2008, Inf. Fusion.

[63]  D. Petri,et al.  Tutorial 14: multisensor data fusion , 2008, IEEE Instrumentation & Measurement Magazine.

[64]  Marina Weber,et al.  Intelligent Decision Making: An AI-Based Approach , 2008, Studies in Computational Intelligence.

[65]  Jean Dezert,et al.  Qualitative belief conditioning rules (QBCR) , 2007, 2007 10th International Conference on Information Fusion.

[66]  Mica R. Endsley,et al.  Toward a Theory of Situation Awareness in Dynamic Systems , 1995, Hum. Factors.

[67]  Jean-Daniel Kant,et al.  Modeling one human decision maker with a multi-agent system: the CODAGE approach , 2006, AAMAS '06.

[68]  Yi Sun,et al.  A Sequential Monte-Carlo and DSmT Based Approach for Conflict Handling in Case of Multiple Targets Tracking , 2007, ICIAR.

[69]  Leonid I. Perlovsky,et al.  Concurrent learning and fusion , 2007, Inf. Fusion.

[70]  Timothy W. Finin,et al.  A Pervasive Computing System for the Operating Room of the Future , 2007, Mob. Networks Appl..

[71]  Shang-Liang Chen,et al.  Data fusion neural network for tool condition monitoring in CNC milling machining , 2000 .

[72]  Y. Zhang,et al.  Active and dynamic information fusion for multisensor systems with dynamic bayesian networks , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[73]  Hong Jin,et al.  fusion algorithm of correlated local estimates , 2004 .

[74]  Belur V. Dasarathy,et al.  Multi-level sensor fusion for improved target discrimination , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[75]  A. Rasheed,et al.  Rational decision‐making and firm performance: the moderating role of the environment , 1997 .

[76]  Belur V. Dasarathy Fusion system: How good is it? Editorial , 2001, Inf. Fusion.

[77]  Jun Zhou,et al.  Reliability Estimation and Design with Insufficient Data Based on Possibility Theory , 2004 .

[78]  Roy H. Campbell,et al.  An infrastructure for context-awareness based on first order logic , 2003, Personal and Ubiquitous Computing.

[79]  P. Smets Data fusion in the transferable belief model , 2000, Proceedings of the Third International Conference on Information Fusion.

[80]  Didier Dubois,et al.  Bipolar possibility theory in preference modeling: Representation, fusion and optimal solutions , 2006, Inf. Fusion.

[81]  Lloyd Treinish Visual data fusion for applications of high-resolution numerical weather prediction , 2000, VIS '00.

[82]  Pascal Vasseur,et al.  Introduction to Multisensor Data Fusion , 2005, The Industrial Information Technology Handbook.

[83]  Qi Han,et al.  Journal of Network and Systems Management ( c ○ 2007) DOI: 10.1007/s10922-007-9062-0 A Survey of Fault Management in Wireless Sensor Networks , 2022 .

[84]  Gail A. Carpenter,et al.  Self-organizing information fusion and hierarchical knowledge discovery: a new framework using ARTMAP neural networks , 2005, Neural Networks.

[85]  Dorin Comaniciu,et al.  An information fusion framework for robust shape tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[86]  Allen M. Waxman,et al.  A new approach to higher-level information fusion using associative learning in semantic networks of spiking neurons , 2007, Inf. Fusion.

[87]  Marco Lops,et al.  Multiuser detection using Random-Set Theory , 2006, 2006 14th European Signal Processing Conference.

[88]  P.R. Smart,et al.  Knowledge-based information fusion for improved situational awareness , 2005, 2005 7th International Conference on Information Fusion.

[89]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[90]  Marek Kowal,et al.  Neuro-fuzzy networks and their application to fault detection of dynamical systems , 2007, Eng. Appl. Artif. Intell..

[91]  Eduardo Freire Nakamura,et al.  Information fusion in wireless sensor networks , 2008, SIGMOD Conference.

[92]  Anthony Hunter,et al.  Information Fusion in Logic: A Brief Overview , 1997, ECSQARU-FAPR.

[93]  Bernhard Rinner,et al.  I-SENSE: Intelligent Embedded Multi-Sensor Fusion , 2006, 2006 International Workshop on Intelligent Solutions in Embedded Systems.

[94]  D. J. Barrett,et al.  Model-Data Fusion , 2003 .

[95]  Robi Polikar,et al.  An ensemble based data fusion approach for early diagnosis of Alzheimer's disease , 2008, Inf. Fusion.

[96]  Bojan Cukic,et al.  Linear randomized voting algorithm for fault tolerant sensor fusion and the corresponding reliability model , 2005, Ninth IEEE International Symposium on High-Assurance Systems Engineering (HASE'05).

[97]  C.-Y. Lin,et al.  A Distributed Multimodality Sensor System for Home-Used Sleep Condition Inference and Monitoring , 2006, 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, 2006. D2H2..

[98]  Belur V. Dasarathy,et al.  Information Fusion - what, where, why, when, and how? Editorial , 2001, Inf. Fusion.

[99]  S. Das,et al.  Precision: Privacy Enhanced Context-Aware Information Fusion in Ubiquitous Healthcare , 2007, First International Workshop on Software Engineering for Pervasive Computing Applications, Systems, and Environments (SEPCASE '07).

[100]  Didier Dubois,et al.  Decision-theoretic foundations of qualitative possibility theory , 2001, Eur. J. Oper. Res..

[101]  Hairong Qi,et al.  Mobile-agent-based collaborative sensor fusion , 2008, Inf. Fusion.

[102]  Stuart J. Russell,et al.  Dynamic bayesian networks: representation, inference and learning , 2002 .

[103]  Chenglin Wen,et al.  A Fusion Algorithm of Multisensor System Based on Sequential Filtering in Distributed Network , 2007, 2007 IEEE International Conference on Automation and Logistics.

[104]  Romulus Terebes,et al.  Low-level fusion: a PDE-based approach , 2007, 2007 10th International Conference on Information Fusion.

[105]  Sukhan Lee,et al.  Multisensor Fusion and Integration for Intelligent Systems , 2009 .

[106]  Weiru Liu,et al.  Fusion rules for merging uncertain information , 2006, Inf. Fusion.

[107]  Christine Illgen,et al.  ON-LINE INTELLIGENT PROCESSOR FOR SITUATION ASSESSMENT , 1997 .

[108]  Richard W. Pew,et al.  Modeling human and organizational behavior : application to military simulations , 1998 .

[109]  Enrica Chiappero Martinetti,et al.  Capability Approach and Fuzzy Set Theory: Description, Aggregation and Inference Issues , 2006 .

[110]  Éloi Bossé,et al.  Modeling and simulation in support of the design of a data fusion system , 2000, Inf. Fusion.

[111]  Samuel S. Blackman,et al.  Design and Analysis of Modern Tracking Systems , 1999 .