Using surface remote sensors to derive mixed-phase cloud radiative forcing: an example from M-PACE

[1]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[2]  Charles N. Long,et al.  A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska , 2010 .

[3]  Andrew Gettelman,et al.  Cloud influence on and response to seasonal Arctic sea ice loss , 2009 .

[4]  Gijs de Boer,et al.  Arctic Mixed-Phase Stratiform Cloud Properties from Multiple Years of Surface-Based Measurements at Two High-Latitude Locations , 2009 .

[5]  C. Furgal,et al.  Implications of Climate Change for Northern Canada: Freshwater, Marine, and Terrestrial Ecosystems , 2009, Ambio.

[6]  David D. Turner,et al.  A Focus on Mixed-Phase Clouds: The Status of Ground-Based Observational Methods , 2008 .

[7]  E. Eloranta,et al.  Preliminary comparison of CloudSAT‐derived microphysical quantities with ground‐based measurements for mixed‐phase cloud research in the Arctic , 2008 .

[8]  Charles N. Long,et al.  An Automated Quality Assessment and Control Algorithm for Surface Radiation Measurements , 2008 .

[9]  Ann M. Fridlind,et al.  Ice properties of single‐layer stratocumulus during the Mixed‐Phase Arctic Cloud Experiment: 1. Observations , 2007 .

[10]  Patrick Minnis,et al.  The Mixed-Phase Arctic Cloud Experiment. , 2007 .

[11]  M. Shupe,et al.  Arctic Mixed-Phase Cloud Properties Derived from Surface-Based Sensors at SHEBA , 2006 .

[12]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[13]  E. Eloranta High Spectral Resolution Lidar , 2005 .

[14]  Sergey Y. Matrosov,et al.  An Arctic Springtime Mixed-Phase Cloudy Boundary Layer Observed during SHEBA. , 2005 .

[15]  M. Shupe,et al.  Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle , 2004 .

[16]  Gerald G. Mace,et al.  Arctic Stratus Cloud Properties and Radiative Forcing Derived from Ground-Based Data Collected at Barrow, Alaska , 2003 .

[17]  Edgar L. Andreas,et al.  An annual cycle of Arctic surface cloud forcing at SHEBA : The surface heat budget of arctic ocen (SHEBA) , 2002 .

[18]  J. Curry,et al.  Surface Heat Budget of the Arctic Ocean , 2002 .

[19]  D. P. Donovan,et al.  Cloud effective particle size and water content profile retrievals using combined lidar and radar observations: 1. Theory and examples , 2001 .

[20]  James O. Pinto,et al.  Autumnal Mixed-Phase Cloudy Boundary Layers in the Arctic , 1998 .

[21]  Brooks E. Martner,et al.  An Unattended Cloud-Profiling Radar for Use in Climate Research , 1998 .

[22]  Judith A. Curry,et al.  Overview of Arctic Cloud and Radiation Characteristics , 1996 .

[23]  J. Key,et al.  Arctic ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud dataset, 1983-1990 , 1994 .

[24]  Judith A. Curry,et al.  Annual Cycle of Radiation Fluxes over the Arctic Ocean: Sensitivity to Cloud Optical Properties , 1992 .

[25]  J. Curry,et al.  A parameterization of ice cloud optical properties for climate models , 1992 .

[26]  Robert Benjamin Lee,et al.  Earth Radiation Budget Experiment , 1990 .

[27]  Robert Benjamin Lee,et al.  Earth Radiation Budget Experiment - Preliminary seasonal results , 1990 .

[28]  B. Barkstrom,et al.  Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment , 1989, Science.

[29]  J. Curry,et al.  Infrared Radiative Properties of Summertime Arctic Stratus Clouds , 1985 .

[30]  V. Derr,et al.  Remote sensing of the lower atmosphere , 1971 .