Epitaxial composite layers of electron donors and acceptors from very large polycyclic aromatic hydrocarbons.

Large polycyclic aromatic hydrocarbons (PAHs) can be considered as nanographenes, whose electron donating or accepting properties are controlled by their size and shape as well as functionalities in their periphery. Epitaxial thin films of them are targets for optoelectronic applications; however, large PAHs are increasingly difficult to process. Here we show that epitaxial layers of very large unsubstituted PAHs (C(42)H(18) and C(132)H(34)), as well as a mixed layer of C(42)H(18) with an electron acceptor, can be obtained by self-assembly from solution. The C(132)H(34) is by far the largest nanographene that up to now has been processed into ordered thin films; due to its size it cannot be sublimed in a vacuum. Scanning tunneling microscopy (STM) studies reveal that the interaction with the substrate induces a strong perturbation of the electronic structure of the pure donor in the first epitaxial monolayer. In a second epitaxial layer with a donor acceptor stoichiometry of 2:1 the molecules are unperturbed.