Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L

AbstractThe compound eye of the housefly Musca domestica L. contains two different types of receptors. The visual acuity of the eye is determined by the divergence angle Δϕ between the optical axes of neighbouring ommatidia. Δϕ and its dependence on the mean pattern brightness is determined by an evaluation of the optomotor responses elicited from various test patterns. Based on the assumption that the visual fields of both types of receptors approximate the shape of a spatial Gaussian distribution they can be characterized by their half-width, designated as the acceptance angle ΔQ. The contrast transfer from the optical environment onto the receptor cells is limited by ΔQ. It is shown experimentally that ΔQ depends on the mean environmental brightness. The characteristic values Δϕ and ΔQ constitute the limiting factors for the light flux received by the receptors. The light flux Φ exciting the receptor cells is proportional to (ΔQ·Δϕ)2. If the product ΔQ·Δϕ is kept constant, there exists a certain ratio $$\frac{{\Delta _\rho }}{{\Delta _\varphi }}$$ that leads to an optimal combination of both, contrast transfer and resolution. The ratio $$\frac{{\Delta _\rho }}{{\Delta _\varphi }}$$ is experimentally determined and compared with the optimal condition. The torque exerted by fixed flying Muscae has been used as a measure of the reaction strength of the optomotor response elicited by the rotation of cylindrical patterns consisting of periodic distributions of surface brightness. The responses were investigated under different spatial wavelengths, contrasts, contrast frequencies and mean pattern brightness. Detailed results are:1.The visual acuity (optical resolution power) of the compound eye of Musca is determined by the divergence angle Δϕ between the optical axes of those adjacent ommatidia which are not positioned in the same horizontally oriented row but — closer together — in neighboured rows.2.Δϕ and consequently also the visual acuity do not depend on the mean environmental brightness.3.The acceptance angle ΔQ changes with the mean brightness of the environment. According to experimental conditions only the minimal acceptance angle Δmin can be experimentally determined. Δmin decreases with increasing mean pattern brightness from 3.6°–4.1° to 1.7°.4.The decrease of ΔQmin with increasing mean pattern brightness is not caused by a change of the acceptance angles of single receptors. The present tentative explanation is that the centrally located receptors No. 7 and 8 are participating in the uptake of relevant visual information at a critical brightness level.5.Near the optomotor threshold the large acceptance angle ΔQmin=3.6° at very dim light would thus be associated with the receptors No. 1 to 6, whereas the smaller acceptance angle ΔQmin=1.7° with the receptors No. 7 and 8.6.Due to a sample spacing of Δϕ=2°, the acceptance angles of neighbouring receptors No. 1 to 6 show a considerable overlap.7.Based on anatomical data, the difference in absolute light sensitivity for both receptor systems is calculated. It is predicted that the absorption rate of light quanta in the less sensitive system of the receptors No. 7 and 8 should be reduced by a factor of 24–48 compared to the more sensitive system of the receptors No. 1 to 6. This factor nicely meets the experimentally determined brightness thresholds of both receptor systems.8.The optimal condition $$\frac{{\Delta _\rho }}{{\Delta _\varphi }}$$ is nearly fulfilled by the receptor system No. 7 and 8 of Musca. The experimentally determined ratio amounts to $$\frac{{\Delta _\rho }}{{\Delta _\varphi }}$$ =0.83. For the receptor system No. 1 to 6 one finds $$\frac{{\Delta _\rho }}{{\Delta _\varphi }}$$ =1.86; in that system the transfer of spatial wavelengths is mainly limited by the reduced contrast transfer which drops to low values before the optical resolution limit is reached.9.Based on the hypothesis that movement perception of the fly Musca is due to a correlation of sensory data one would expect an optomotor peak reaction at a spatial wavelength of λmax=8° and a decrease of the optomotor response towards longer spatial wavelengths. The experimental data are in conflict with these predictions. The present notion is that the absence of the expected reaction decrease is not likely to be caused by a saturation effect in the reaction but rather is explainable in terms of a receptor system consisting of larger numbers of receptor types No. 1 to 6 whose excitations being summed before a correlation evaluation takes place.

[1]  M. Wolbarsht Processing of Optical Data by Organisms and by Machines. Proceedings of the International School of Physics "Enrico Fermi" Course XLIII.W. Reichardt , 1971 .

[2]  Dietrich Burkhardt,et al.  Visual field of single retinula cells and interommatidial inclination in the compound eye of the blowfly Calliphora erythrocephala , 1964, Zeitschrift für vergleichende Physiologie.

[3]  Boschek Cb On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. , 1971 .

[4]  B. Hassenstein,et al.  Die Stärke von optokinetischen Reaktionen auf verschiedene Mustergeschwindigkeiten , 1958 .

[5]  B. Hassenstein,et al.  Über die Wahrnehmung der Bewegung von Figuren und unregelmässigen Helligkeitsmustern , 1957, Zeitschrift für vergleichende Physiologie.

[6]  G. D. Mccann,et al.  Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. , 1968, Journal of neurophysiology.

[7]  M. Hertz,et al.  Zur Physiologie des Formen- und Bewegungssehens II , 2004, Zeitschrift für vergleichende Physiologie.

[8]  H. Eckert Die spektrale Empfindlichkeit des Komplexauges von Musca (Bestimmung aus Messungen der optomotorischen reaktion) , 1971, Kybernetik.

[9]  W. Reichardt,et al.  Systemtheoretische Analyse einer Verhaltensweise (der Wechsel-Folgen-Reaktion des Rüsselkäfers Chlorophanus viridis) , 1952 .

[10]  Werner Reichardt,et al.  Notizen: Optomotorische Versuche an Musca mit linear polarisiertem Licht , 1970 .

[11]  Karl Georg Götz,et al.  Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila , 1965, Kybernetik.

[12]  F. Zettler,et al.  Electrophysiological-histological studies on some functional properties of visual cells and second order neurons of an insect retina , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[13]  W Reichardt,et al.  Functional structure of a mechanism of perception of optical movement , 1958 .

[14]  B. Hassenstein Optokinetische Wirksamkeit bewegter periodischer Muster (Nach Messungen am Rüsselkäfer Chlorophanus viridis) , 1959 .

[15]  B. Hassenstein,et al.  Ommatidienraster und afferente Bewegungsintegration , 1951, Zeitschrift für vergleichende Physiologie.

[16]  Kg Götz Verhaltensanalyse des visuellen Systems der Fruchtfliege Drosophila , 1965 .

[17]  J. Scholes The electrical responses of the retinal receptors and the lamina in the visual system of the fly musca , 1969, Kybernetik.

[18]  Jaroslav Král,et al.  A note on grammars with regular restrictions , 1973, Kybernetika.

[19]  V. Braitenberg Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.

[20]  Peter Kunze,et al.  Untersuchung des Bewegungssehens fixiert fliegender Bienen , 1961, Zeitschrift für Vergleichende Physiologie.

[21]  G. Bruce Boschek,et al.  On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[22]  Werner Reichardt,et al.  Der Schluß von Reiz-Reaktions-Funktionen auf System-Strukturen , 1953 .

[23]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[24]  D. Varjú Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster , 1959 .

[25]  N. Franceschini,et al.  Les phénomènes de pseudopupille dans l'œil composé deDrosophila , 1971, Kybernetik.

[26]  D. Vowles The receptive fields of cells in the retina of the housefly (Musca domestica) , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[27]  K. Kirschfeld,et al.  Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca , 1969, Kybernetik.

[28]  W. Reichardt,et al.  Übertragungseigenschaften im Auswertesystem für das Bewegungssehen , 1959 .

[29]  K. Kirschfeld,et al.  Optische Eigenschaften der Ommatidien im Komplexauge von Musca , 1968, Kybernetik.

[30]  M. Briggs Retinene-1 in Insect Tissues , 1961, Nature.

[31]  Werner Reichardt,et al.  Auslösung von Elementarprozessen durch einzelne Lichtquanten im Fliegenauge , 1968, Kybernetik.

[32]  Mercedes Gaffron,et al.  Untersuchungen über das Bewegungssehen bei Libellenlarven, Fliegen und Fischen , 2004, Zeitschrift für vergleichende Physiologie.

[33]  Matti Järvilehto,et al.  Lateral inhibition in an insect eye , 1972, Zeitschrift für vergleichende Physiologie.

[34]  K. Kirschfeld,et al.  Die projektion der optischen umwelt auf das raster der rhabdomere im komplexauge von Musca , 2004, Experimental Brain Research.

[35]  B. Hassenstein Wandernde geometrische Interferenzfiguren im Insektenauge , 1950, Naturwissenschaften.

[36]  Kuno Kirschfeld,et al.  Das anatomische und das physiologische Sehfeld der Ommatidien im Komplexauge von Musca , 1965, Kybernetik.

[37]  Giulio Fermi,et al.  Optomotorische Reaktionen der Fliege Musca Domestica , 1963, Kybernetik.

[38]  H. Autrum,et al.  Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges , 1964, Zeitschrift für vergleichende Physiologie.

[39]  K. Kirschfeld Aufnahme und Verarbeitung optischer Daten im Komplexauge von Insekten , 1971, Naturwissenschaften.

[40]  Werner Reichardt,et al.  Übertragungseigenschaften im Auswertesystem für das Bewegungssehen II , 1967 .

[41]  G. D. Mccann,et al.  Optomotor response studies of insect vision , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[42]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.