Robust multivariate density estimation under Gaussian noise
暂无分享,去创建一个
[1] Jan Flusser,et al. Degraded Image Analysis: An Invariant Approach , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[2] F. Comte,et al. Adaptive estimation of linear functionals in the convolution model and applications , 2009, 0902.1443.
[3] Emmanuel J. Candès,et al. The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..
[4] James R. Schott,et al. Kronecker product permutation matrices and their application to moment matrices of the normal distribution , 2003 .
[5] Gabriele Steidl,et al. Denoising by second order statistics , 2012, Signal Process..
[6] P. Hall,et al. Optimal Rates of Convergence for Deconvolving a Density , 1988 .
[7] Dietrich von Rosen,et al. Moments for matrix normal variables , 1988 .
[8] Ramin Zabih,et al. Histogram refinement for content-based image retrieval , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.
[9] Claire Lacour,et al. Data driven density estimation in presence of unknown convolution operator , 2011 .
[10] Johanna Kappus,et al. Adaptive density estimation in deconvolution problems with unknown error distribution , 2013 .
[11] Majid Ahmadi,et al. Wavelet-Domain Blur Invariants for Image Analysis , 2012, IEEE Transactions on Image Processing.
[12] William Puech,et al. Digital image restoration by Wiener filter in 2D case , 2007, Adv. Eng. Softw..
[13] Ville Ojansivu,et al. Image Registration Using Blur-Invariant Phase Correlation , 2007, IEEE Signal Processing Letters.
[14] Jianqing Fan,et al. Deconvolution with supersmooth distributions , 1992 .
[15] W. Bar,et al. Useful formula for moment computation of normal random variables with nonzero means , 1971 .
[16] Jean-Michel Morel,et al. A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..
[17] H. W. Gould,et al. Double Fun with Double Factorials , 2012 .
[18] R. Carroll,et al. Deconvolving kernel density estimators , 1987 .
[19] P. Lions,et al. Image recovery via total variation minimization and related problems , 1997 .
[20] Iickho Song,et al. Explicit formulae for product moments of multivariate Gaussian random variables , 2015 .
[21] Glenn Healey,et al. Using Zernike moments for the illumination and geometry invariant classification of multispectral texture , 1998, IEEE Trans. Image Process..
[22] Huazhong Shu,et al. Blurred Image Recognition by Legendre Moment Invariants , 2010, IEEE Transactions on Image Processing.
[23] Kostas Triantafyllopoulos,et al. On the central moments of the multidimensional Gaussian distribution , 2003 .
[24] Claire Lacour,et al. Data‐driven density estimation in the presence of additive noise with unknown distribution , 2011 .
[25] Jan Flusser,et al. Blur Invariant Translational Image Registration for $N$-fold Symmetric Blurs , 2013, IEEE Transactions on Image Processing.
[26] IV CyrilHöschl,et al. Robust histogram-based image retrieval , 2016, Pattern Recognit. Lett..
[27] J. Johannes. DECONVOLUTION WITH UNKNOWN ERROR DISTRIBUTION , 2007, 0705.3482.
[28] Rama Chellappa,et al. A Blur-Robust Descriptor with Applications to Face Recognition , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[29] Jean-Michel Morel,et al. A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[30] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[32] Tien D. Bui,et al. Multivariate statistical approach for image denoising , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[33] Jan Flusser,et al. Moment Forms Invariant to Rotation and Blur in Arbitrary Number of Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[34] A. Meister. Deconvolution Problems in Nonparametric Statistics , 2009 .
[35] R. Blacher. Multivariate quadratic forms of random vectors , 2003 .
[36] B. Vidakovic,et al. Adaptive wavelet estimator for nonparametric density deconvolution , 1999 .
[37] L. Isserlis. ON A FORMULA FOR THE PRODUCT-MOMENT COEFFICIENT OF ANY ORDER OF A NORMAL FREQUENCY DISTRIBUTION IN ANY NUMBER OF VARIABLES , 1918 .
[38] Guangyi Chen,et al. Wavelet-based denoising: A brief review , 2013, 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP).
[39] Rakhi C. Motwani,et al. Survey of Image Denoising Techniques , 2004 .
[40] Michael J. Swain,et al. Color indexing , 1991, International Journal of Computer Vision.
[41] Jan Flusser,et al. Projection Operators and Moment Invariants to Image Blurring , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[42] Bart De Moor,et al. Deconvolution in nonparametric statistics , 2012, ESANN.