The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through both feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of these neurons. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array (MEA) recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain, and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and duration of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research.

[1]  Erik De Schutter,et al.  Unraveling the cerebellar cortex: Cytology and cellular physiology of large-sized interneurons in the granular layer , 2008, The Cerebellum.

[2]  Kanichay Rt,et al.  Synaptic and Cellular Properties of the Feedforward Inhibitory Circuit within the Input Layer of the Cerebellar Cortex , 2008 .

[3]  S. Cull-Candy,et al.  Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. , 1996, The Journal of physiology.

[4]  R. Llinás,et al.  SPECIALIZED MEMBRANE JUNCTIONS BETWEEN NEURONS IN THE VERTEBRATE CEREBELLAR CORTEX , 1972, The Journal of cell biology.

[5]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[6]  Giovanni Naldi,et al.  Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. , 2009, Journal of neurophysiology.

[7]  Egidio D'Angelo,et al.  Differential induction of bidirectional long‐term changes in neurotransmitter release by frequency‐coded patterns at the cerebellar input , 2009, The Journal of physiology.

[8]  Yves Lamarre,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience Synchronization in Primate Cerebellar Granule Cell Layer Local Fi Eld Potentials: Basic Anisotropy and Dynamic Changes during Active Expectancy , 2022 .

[9]  Yuguo Yu,et al.  Neocortical Networks Entrain Neuronal Circuits in Cerebellar Cortex , 2009, The Journal of Neuroscience.

[10]  A. Pellionisz,et al.  Tensorial approach to the geometry of brain function: Cerebellar coordination via a metric tensor , 1980, Neuroscience.

[11]  R Angus Silver,et al.  Synaptic and Cellular Properties of the Feedforward Inhibitory Circuit within the Input Layer of the Cerebellar Cortex , 2008, The Journal of Neuroscience.

[12]  Richard Apps,et al.  Cerebellar cortical organization: a one-map hypothesis , 2009, Nature Reviews Neuroscience.

[13]  E De Schutter,et al.  Precise spike timing of tactile-evoked cerebellar Golgi cell responses: a reflection of combined mossy fiber and parallel fiber activation? , 2000, Progress in brain research.

[14]  Egidio D'Angelo,et al.  Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells , 2006, The Journal of physiology.

[15]  J Szentágothai,et al.  Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. , 1971, Brain research.

[16]  Urs Gerber,et al.  Golgi Cell-Mediated Activation of Postsynaptic GABAB Receptors Induces Disinhibition of the Golgi Cell-Granule Cell Synapse in Rat Cerebellum , 2012, PloS one.

[17]  E. Formisano,et al.  Phase coupling in a cerebro-cerebellar network at 8-13 Hz during reading. , 2007, Cerebral cortex.

[18]  M Lidierth,et al.  The discharges of cerebellar Golgi cells during locomotion in the cat. , 1987, The Journal of physiology.

[19]  V Taglietti,et al.  Theta-Frequency Bursting and Resonance in Cerebellar Granule Cells: Experimental Evidence and Modeling of a Slow K+-Dependent Mechanism , 2001, The Journal of Neuroscience.

[20]  G. Dugué,et al.  Target-Dependent Use of Coreleased Inhibitory Transmitters at Central Synapses , 2005, The Journal of Neuroscience.

[21]  J. Hámori,et al.  Quantitative morphology and synaptology of cerebellar glomeruli in the rat , 1988, Anatomy and Embryology.

[22]  Nick Dean,et al.  The Mind within the Net: Manfred Spitzer: MIT Press, Cambridge, MA, 351pp., ISBN: 0-262-1904-6 , 2000, Neurocomputing.

[23]  Tahl Holtzman,et al.  Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs , 2006, The Journal of physiology.

[24]  D. Rossi,et al.  Spillover-Mediated Transmission at Inhibitory Synapses Promoted by High Affinity α6 Subunit GABAA Receptors and Glomerular Geometry , 1998, Neuron.

[25]  B. Barrell,et al.  Glutamate spillover suppresses inhibition by activating presynaptic mGluRs , 2000, Nature.

[26]  Sergio Solinas,et al.  Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control , 2011, PloS one.

[27]  Egidio D'Angelo,et al.  Inhibition of constitutive inward rectifier currents in cerebellar granule cells by pharmacological and synaptic activation of GABAB receptors , 2006, The European journal of neuroscience.

[28]  N. Slater,et al.  Resurgent Na currents in four classes of neurons of the cerebellum. , 2004, Journal of neurophysiology.

[29]  C. I. De Zeeuw,et al.  Timing in the cerebellum: oscillations and resonance in the granular layer , 2009, Neuroscience.

[30]  Nicolas Brunel,et al.  Electrical Coupling Mediates Tunable Low-Frequency Oscillations and Resonance in the Cerebellar Golgi Cell Network , 2009, Neuron.

[31]  Egidio D'Angelo,et al.  Intracellular Calcium Regulation by Burst Discharge Determines Bidirectional Long-Term Synaptic Plasticity at the Cerebellum Input Stage , 2005, The Journal of Neuroscience.

[32]  E. D’Angelo,et al.  Discovery and rediscoveries of Golgi cells , 2010, The Journal of physiology.

[33]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[34]  R. Shigemoto,et al.  Morphological and neurochemical differentiation of large granular layer interneurons in the adult rat cerebellum , 2001, Neuroscience.

[35]  M Farrant,et al.  Identification of subunits contributing to synaptic and extrasynaptic NMDA receptors in Golgi cells of the rat cerebellum , 2000, The Journal of physiology.

[36]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  Egidio D'Angelo,et al.  Computational Reconstruction of Pacemaking and Intrinsic Electroresponsiveness in Cerebellar Golgi Cells , 2007, Frontiers in cellular neuroscience.

[38]  J. Houk,et al.  Movement-related inputs to intermediate cerebellum of the monkey. , 1993, Journal of neurophysiology.

[39]  J. Oberdick,et al.  Cerebellar Zones: History, Development, and Function , 2011, The Cerebellum.

[40]  R. Harvey,et al.  Quantitatives studies on the mammalian cerebellum , 1991, Progress in Neurobiology.

[41]  David Kleinfeld,et al.  Active sensation: insights from the rodent vibrissa sensorimotor system , 2006, Current Opinion in Neurobiology.

[42]  V. Braitenberg Is the cerebellar cortex a biological clock in the millisecond range? , 1967, Progress in brain research.

[43]  J. Fritschy,et al.  Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum , 2007, The Journal of comparative neurology.

[44]  F. A. Miles,et al.  Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. , 1980, Journal of neurophysiology.

[45]  D. Haines,et al.  Commentary on “Sulla Fina Anatomia del Cervelletto Umano. Archivio Italiano per le Malatie Nervose 11:90–107.” (English Title: On the Fine Anatomy of the Human Cerebellum) , 2012, The Cerebellum.

[46]  Egidio D'Angelo,et al.  Fast-Reset of Pacemaking and Theta-Frequency Resonance Patterns in Cerebellar Golgi Cells: Simulations of their Impact In Vivo , 2007, Frontiers in cellular neuroscience.

[47]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[48]  J. Hámori,et al.  Differentiation of cerebellar mossy fiber synapses in the rat: A quantitative electron microscope study , 1983, The Journal of comparative neurology.

[49]  Peter W Dicke,et al.  Characteristics of Responses of Golgi Cells and Mossy Fibers to Eye Saccades and Saccadic Adaptation Recorded from the Posterior Vermis of the Cerebellum , 2009, The Journal of Neuroscience.

[50]  A. Pellionisz,et al.  Space-time representation in the brain. The cerebellum as a predictive space-time metric tensor , 1982, Neuroscience.

[51]  S. Dieudonné,et al.  Serotonin-Driven Long-Range Inhibitory Connections in the Cerebellar Cortex , 2000, The Journal of Neuroscience.

[52]  G. R. Noakes,et al.  Vibrations and Waves , 1962, Nature.

[53]  J. Bower,et al.  Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. , 1983, Journal of neurophysiology.

[54]  Egidio D'Angelo,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience , 2022 .

[55]  Court Hull,et al.  Identification of an Inhibitory Circuit that Regulates Cerebellar Golgi Cell Activity , 2012, Neuron.

[56]  Sanford L. Palay,et al.  The Golgi Cells , 1974 .

[57]  B. Pakkenberg,et al.  A quantitative study of the human cerebellum with unbiased stereological techniques , 1992, The Journal of comparative neurology.

[58]  Arne Møller,et al.  Total numbers of various cell types in rat cerebellar cortex estimated using an unbiased stereological method , 1993, Brain Research.

[59]  R. Llinás,et al.  The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells , 2004, Experimental Brain Research.

[60]  Sisir Roy,et al.  The ‘prediction imperative’ as the basis for self-awareness , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[61]  D. Harriman CEREBELLAR CORTEX, CYTOLOGY AND ORGANIZATION , 1974 .

[62]  Thierry Nieus,et al.  LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. , 2006, Journal of neurophysiology.

[63]  Detlef Heck,et al.  Detection of sequences in the cerebellar cortex: numerical estimate of the possible number of tidal-wave inducing sequences represented , 2003, Journal of Physiology-Paris.

[64]  J. Albus A Theory of Cerebellar Function , 1971 .

[65]  Egidio D'Angelo,et al.  The Spatial Organization of Long-Term Synaptic Plasticity at the Input Stage of Cerebellum , 2007, The Journal of Neuroscience.

[66]  David Attwell,et al.  Multiple modes of GABAergic inhibition of rat cerebellar granule cells , 2003, The Journal of physiology.

[67]  E. D’Angelo,et al.  Theta-Frequency Resonance at the Cerebellum Input Stage Improves Spike Timing on the Millisecond Time-Scale , 2013, Front. Neural Circuits.

[68]  伊藤 正男 The cerebellum and neural control , 1984 .

[69]  E. De Schutter,et al.  Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. , 1998, Journal of neurophysiology.

[70]  W. Xu,et al.  Climbing fibre‐dependent changes in Golgi cell responses to peripheral stimulation , 2008, The Journal of physiology.

[71]  M. Fujita,et al.  Adaptive filter model of the cerebellum , 1982, Biological Cybernetics.

[72]  Thierry Nieus,et al.  Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. , 2009, Journal of neurophysiology.

[73]  J. Amin,et al.  Rat α6β2δ GABAA receptors exhibit two distinct and separable agonist affinities , 2007, The Journal of physiology.

[74]  Erik De Schutter,et al.  Parallel Fibers Synchronize Spontaneous Activity in Cerebellar Golgi Cells , 1999, The Journal of Neuroscience.

[75]  Egidio D’Angelo,et al.  Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage , 2013, PloS one.

[76]  Richard Hawkes,et al.  Golgi Cell Dendrites Are Restricted by Purkinje Cell Stripe Boundaries in the Adult Mouse Cerebellar Cortex , 2008, The Journal of Neuroscience.

[77]  Y Shinoda,et al.  The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. , 2000, Progress in brain research.

[78]  Stuart G. Cull-Candy,et al.  Single-Channel Properties of Synaptic and Extrasynaptic GABAA Receptors Suggest Differential Targeting of Receptor Subtypes , 1999, The Journal of Neuroscience.

[79]  Egidio D'Angelo,et al.  Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer. , 2010, Journal of neurophysiology.

[80]  M. Häusser,et al.  High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons , 2007, Nature.

[81]  S.Arif Kamal,et al.  Space-Time Representation in the Brain. , 1992 .

[82]  S. Dieudonné,et al.  Submillisecond kinetics and low efficacy of parallel fibre‐Golgi cell synaptic currents in the rat cerebellum , 1998, The Journal of physiology.

[83]  Lokeshvar Nath Kalia,et al.  Timing and plasticity in the cerebellum: focus on the granular layer , 2009, Trends in Neurosciences.

[84]  E. D’Angelo,et al.  Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. , 1999, Journal of neurophysiology.

[85]  Egidio D'Angelo,et al.  The Critical Role of Golgi Cells in Regulating Spatio-Temporal Integration and Plasticity at the Cerebellum Input Stage , 2008, Front. Neurosci..

[86]  Tiago Branco,et al.  Tonic Inhibition Enhances Fidelity of Sensory Information Transmission in the Cerebellar Cortex , 2012, The Journal of Neuroscience.

[87]  C. Mulle,et al.  Kainate receptor-mediated synaptic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[88]  G. Westbrook,et al.  Direct actions of carbenoxolone on synaptic transmission and neuronal membrane properties. , 2009, Journal of neurophysiology.

[89]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[90]  Naiphinich Kotchabhakdi,et al.  Developmental Changes of Inhibitory Synaptic Currents in Cerebellar Granule Neurons: Role of GABAA Receptor α6 Subunit , 1996, The Journal of Neuroscience.

[91]  David Attwell,et al.  Tonic and Spillover Inhibition of Granule Cells Control Information Flow through Cerebellar Cortex , 2002, Neuron.

[92]  H. Jörntell,et al.  Sensory Coding by Cerebellar Mossy Fibres through Inhibition-Driven Phase Resetting and Synchronisation , 2011, PloS one.

[93]  Thierry Nieus,et al.  A Realistic Large-Scale Model of the Cerebellum Granular Layer Predicts Circuit Spatio-Temporal Filtering Properties , 2009, Front. Cell. Neurosci..

[94]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[95]  N. Barmack,et al.  Functions of Interneurons in Mouse Cerebellum , 2008, The Journal of Neuroscience.

[96]  H. Noda,et al.  Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation , 1980, The Journal of physiology.

[97]  Peter Somogyi,et al.  Segregation of Different GABAA Receptors to Synaptic and Extrasynaptic Membranes of Cerebellar Granule Cells , 1998, The Journal of Neuroscience.

[98]  Hee-Sup Shin,et al.  Channel-Mediated Tonic GABA Release from Glia , 2010, Science.

[99]  E De Schutter,et al.  Coding in the granular layer of the cerebellum. , 2001, Progress in brain research.

[100]  James M. Bower,et al.  Tactile Responses in the Granule Cell Layer of Cerebellar Folium Crus IIa of Freely Behaving Rats , 2001, The Journal of Neuroscience.

[101]  Dean V. Buonomano,et al.  Neural Network Model of the Cerebellum: Temporal Discrimination and the Timing of Motor Responses , 1999, Neural Computation.

[102]  M. Häusser,et al.  Intersynaptic diffusion of neurotransmitter. , 1997, Trends in neurosciences.

[103]  Egidio D'Angelo,et al.  Tactile Stimulation Evokes Long-Term Synaptic Plasticity in the Granular Layer of Cerebellum , 2008, The Journal of Neuroscience.

[104]  G. Maccaferri,et al.  Is connexin36 critical for GABAergic hypersynchronization in the hippocampus? , 2011, The Journal of physiology.

[105]  E. D'Angelo,et al.  Long-Term Potentiation of Intrinsic Excitability at the Mossy Fiber–Granule Cell Synapse of Rat Cerebellum , 2000, The Journal of Neuroscience.

[106]  J. Bower,et al.  Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation , 1996, Experimental Brain Research.

[107]  J. Eccles,et al.  Golgi Cell Inhibition in the Cerebellar Cortex , 1964, Nature.

[108]  Markus Butz,et al.  Task-dependent oscillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography , 2005, NeuroImage.

[109]  S. Highstein,et al.  Golgi Cells Operate as State-Specific Temporal Filters at the Input Stage of the Cerebellar Cortex , 2010, The Journal of Neuroscience.

[110]  J M Bower,et al.  Oscillatory activity in the cerebellar hemispheres of unrestrained rats. , 1998, Journal of neurophysiology.

[111]  M. Häusser,et al.  Integration of quanta in cerebellar granule cells during sensory processing , 2004, Nature.

[112]  R. Angus Silver,et al.  GABA Spillover from Single Inhibitory Axons Suppresses Low-Frequency Excitatory Transmission at the Cerebellar Glomerulus , 2000, The Journal of Neuroscience.

[113]  Javier F. Medina,et al.  Computer simulation of cerebellar information processing , 2000, Nature Neuroscience.

[114]  A. Pellionisz,et al.  Brain modeling by tensor network theory and computer simulation. The cerebellum: Distributed processor for predictive coordination , 1979, Neuroscience.

[115]  E De Schutter,et al.  Peripheral stimuli excite coronal beams of Golgi cells in rat cerebellar cortex , 2002, Neuroscience.

[116]  V. Braitenberg,et al.  The detection and generation of sequences as a key to cerebellar function: Experiments and theory , 1997, Behavioral and Brain Sciences.

[117]  A. Pestronk Histology of the Nervous System of Man and Vertebrates , 1997, Neurology.

[118]  E. D’Angelo,et al.  Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. , 1995, The Journal of physiology.

[119]  Sergio Solinas,et al.  Realistic Modeling of Large-Scale Networks: Spatio-temporal Dynamics and Long-Term Synaptic Plasticity in the Cerebellum , 2011, IWANN.

[120]  S. Dieudonné,et al.  IPSC Kinetics at Identified GABAergic and Mixed GABAergic and Glycinergic Synapses onto Cerebellar Golgi Cells , 2001, The Journal of Neuroscience.

[121]  Ian E Brown,et al.  The Influence of Somatosensory Cortex on Climbing Fiber Responses in the Lateral Hemispheres of the Rat Cerebellum after Peripheral Tactile Stimulation , 2002, The Journal of Neuroscience.

[122]  Erik De Schutter,et al.  Long-term depression at parallel fiber to Golgi cell synapses. , 2010, Journal of neurophysiology.

[123]  E De Schutter,et al.  Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation , 1999, The European journal of neuroscience.

[124]  J M Bower,et al.  Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum , 2001, The Journal of comparative neurology.

[125]  Erik De Schutter,et al.  Oscillations in the cerebellar cortex: a prediction of their frequency bands. , 2005, Progress in brain research.

[126]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[127]  Rune W. Berg,et al.  Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking. , 2002, Journal of neurophysiology.

[128]  Dai Watanabe,et al.  mGluR2 Postsynaptically Senses Granule Cell Inputs at Golgi Cell Synapses , 2003, Neuron.

[129]  R. Silver,et al.  Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input , 2010, Neuron.

[130]  E. De Schutter,et al.  Current source density correlates of cerebellar Golgi and Purkinje cell responses to tactile input. , 2011, Journal of neurophysiology.

[131]  E. D’Angelo,et al.  Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition , 2013, Front. Neural Circuits.

[132]  E. D’Angelo,et al.  Anatomical investigation of potential contacts between climbing fibers and cerebellar Golgi cells in the mouse , 2013, Front. Neural Circuits.

[133]  J. Eccles The cerebellum as a computer: patterns in space and time. , 1973, The Journal of physiology.

[134]  J Szentágothai,et al.  Dynamic single unit simulation of a realistic cerebellar network model. , 1973, Brain research.

[135]  E. D'Angelo,et al.  Dual-component NMDA receptor currents at a single central synapse , 1990, Nature.

[136]  T. Otis,et al.  Effects of Climbing Fiber Driven Inhibition on Purkinje Neuron Spiking , 2012, The Journal of Neuroscience.

[137]  D. Tank,et al.  Widespread State-Dependent Shifts in Cerebellar Activity in Locomoting Mice , 2012, PloS one.

[138]  S. Barnes,et al.  Carbenoxolone inhibition of voltage-gated Ca channels and synaptic transmission in the retina. , 2004, Journal of neurophysiology.

[139]  Richard Apps,et al.  Precise Spatial Relationships between Mossy Fibers and Climbing Fibers in Rat Cerebellar Cortical Zones , 2006, The Journal of Neuroscience.

[140]  Y Shinoda,et al.  Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei , 1999, The Journal of comparative neurology.

[141]  Erik De Schutter,et al.  Computational neuroscience : realistic modeling for experimentalists , 2000 .

[142]  J. Bower,et al.  Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. , 2007, Journal of neurophysiology.

[143]  R Angus Silver,et al.  The Contribution of Single Synapses to Sensory Representation in Vivo , 2008, Science.

[144]  Richard Apps,et al.  The Distribution of Climbing and Mossy Fiber Collateral Branches from the Copula Pyramidis and the Paramedian Lobule: Congruence of Climbing Fiber Cortical Zones and the Pattern of Zebrin Banding within the Rat Cerebellum , 2003, The Journal of Neuroscience.

[145]  Henrik Jörntell,et al.  Properties of Somatosensory Synaptic Integration in Cerebellar Granule Cells In Vivo , 2006, The Journal of Neuroscience.

[146]  Y. Lamarre,et al.  Local field potential oscillations in primate cerebellar cortex during voluntary movement. , 1997, Journal of neurophysiology.

[147]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.