Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors

We investigate the thermal expansion of low thermal noise Fabry–Perot cavities made of low thermal expansion (LTE) glass spacers and fused silica (FS) mirrors. The different thermal expansion of mirror and spacer deforms the mirror. This deformation strongly contributes to the cavity’s effective coefficient of thermal expansion (CTE), decreasing the zero crossing temperature by about 20 K compared to an all-LTE glass cavity. Finite element simulations and CTE measurements show that LTE rings optically contacted to the back surface of the FS mirrors allow to tune the zero crossing temperature over a range of 30 K.

[1]  P. Lemonde,et al.  Ultrastable lasers based on vibration insensitive cavities , 2009, 0901.4717.

[2]  A. Luiten,et al.  Ultra-low noise microwave extraction from fiber-based optical frequency comb , 2009, EFTF-2010 24th European Frequency and Time Forum.

[3]  H. Stoehr,et al.  Diode laser with 1 Hz linewidth. , 2006, Optics letters.

[4]  L. Hollberg,et al.  Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references. , 2005, Optics letters.

[5]  Jun Ye,et al.  Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers , 2006 .

[6]  Yuri Levin Internal thermal noise in the LIGO test masses: A direct approach , 1998 .

[7]  David Blair,et al.  Temperature compensation for cryogenic cavity stabilized lasers , 1995 .

[8]  D. Blair,et al.  Temperature-compensated cryogenic Fabry-Perot cavity. , 1997, Applied optics.

[9]  Patrick Gill,et al.  Vibration insensitive optical cavity , 2007 .

[10]  Fritz Riehle,et al.  Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser , 2006 .

[11]  Flavio C. Cruz,et al.  VISIBLE LASERS WITH SUBHERTZ LINEWIDTHS , 1999 .

[12]  Gesine Grosche,et al.  The Stability of an Optical Clock Laser Transferred to the Interrogation Oscillator for a Cs Fountain , 2008, IEEE Transactions on Instrumentation and Measurement.

[13]  J Ye,et al.  Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10(-15). , 2007, Optics letters.

[14]  J. W. Berthold,et al.  Dimensional Stability of Fused Silica, Invar, and Several Ultra-low Thermal Expansion Materials , 1977 .

[15]  Richard W. Fox Fabry-Perot temperature dependence and surface-mounted optical cavities , 2008, Photonics North.

[16]  J. Millo,et al.  Thermal-noise-limited optical cavity , 2008, 2008 Conference on Precision Electromagnetic Measurements Digest.

[17]  Christian Chardonnet,et al.  Long-distance frequency transfer over an urban fiber link using optical phase stabilization , 2008, 0807.1882.

[18]  Jun Ye,et al.  Sr Lattice Clock at 1 × 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock , 2008, Science.

[19]  Kenji Numata,et al.  Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.

[20]  Christian Chardonnet,et al.  Transfer of an optical frequency over an urban fiber link , 2008 .

[21]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[22]  Paul A. Williams,et al.  High-stability transfer of an optical frequency over long fiber-optic links , 2008 .

[23]  F. Riehle,et al.  Use of optical frequency standards for measurements of dimensional stability , 1998 .

[24]  M. Norton,et al.  Dimensional stability of fused silica, Invar, and several ultralow thermal expansion materials. , 1976, Applied optics.

[25]  A. Clairon,et al.  Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock , 2009, 0901.3654.

[26]  Andrew D. Shiner,et al.  A narrow linewidth and frequency-stable probe laser source for  the 88Sr+ single ion optical frequency standard , 2009 .

[27]  Jun Ye,et al.  Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. , 2005, Optics letters.

[28]  J. W. Berthold Iii,et al.  Ultraprecise thermal expansion measurements of seven low expansion materials. , 1976, Applied optics.

[29]  W. Marsden I and J , 2012 .