Control system design based on a nonlinear first-order plus time delay model

Abstract Most chemical processes are nonlinear in nature. When large set point changes or load disturbances occur frequently, nonlinear control systems are required. Instead of using the differential geometric method or nonlinear model predictive method, simple gain scheduling may be sufficient for many nonlinear single input-single output (SISO) processes. To design such simple control systems systematically, a nonlinear first-order plus time delay model is proposed for model-based control. A logarithmic transformation which is very useful for control of high purity distillation columns is shown to be effective in general. Several chemical process examples are also given.

[1]  C. Kravaris,et al.  Geometric methods for nonlinear process control. 1. Background , 1990 .

[2]  T. Gustafsson,et al.  Dynamic modeling and reaction invariant control of pH , 1983 .

[3]  J. Masliyah,et al.  Rheology of oil in water emulsions with added kaolinite clay , 1991 .

[4]  K. S. Lee,et al.  On‐line optimizing control of a nonadiabatic fixed bed reactor , 1985 .

[5]  Tore Hägglund,et al.  Automatic Tuning of Pid Controllers , 1988 .

[6]  John F. MacGregor,et al.  Application of LQ and IMC controllers to a packed‐bed reactor , 1987 .

[7]  W. Rugh Design of nonlinear PID controllers , 1987 .

[8]  A. Krener Approximate linearization by state feedback and coordinate change , 1984 .

[9]  Bernard Friedland,et al.  Advanced Control System Design , 1996 .

[10]  C. Kravaris,et al.  Nonlinear State Feedback Synthesis by Global Input/Output Linearization , 1986, 1986 American Control Conference.

[11]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[12]  B. Wayne Bequette,et al.  Nonlinear predictive control of uncertain processes: Application to a CSTR , 1991 .

[13]  Thomas F. Edgar,et al.  Nonlinear heat exchanger control through the use of partially linearized control variables , 1989 .

[14]  Costas Kravaris,et al.  Input/output linearization: A nonlinear analog of placing poles at process zeros , 1988 .

[15]  A. B. Poore,et al.  On the dynamic behavior of continuous stirred tank reactors , 1974 .

[16]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[17]  William L. Luyben,et al.  Nonlinear dynamic matrix control for high‐purity distillation columns , 1988 .

[18]  M. A. Henson,et al.  An internal model control strategy for nonlinear systems , 1991 .

[19]  R. A. Wright,et al.  Nonlinear control of pH processes using the strong acid equivalent , 1991 .

[20]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .