Effect of hydrogenated fat-embedded calcium gluconate on lactation performance in dairy cows

Abstract Hydrogenated fat-embedded calcium gluconate (HFCG), a prebiotic mixture designed to target the hindgut, has improved milk and component yields when supplemented in mid-lactation cows, likely due to improved hindgut health. The objective of this study was to evaluate production responses to HFCG when fed to dairy cattle over a full lactation. Seventy-four Holstein cows (21 primiparous, 53 multiparous) were used in a randomized complete block design comparing supplementation with HFCG (approximately 16 g/day supplement delivering approximately 6.4 g active ingredient) to a negative control from approximately 21 days prior to calving until end of lactation. In multiparous cattle supplemented with HFCG, average daily milk protein yield (P = 0.037) was increased during the first 8 weeks of lactation, while average daily yields of milk fat, and fat- and energy-corrected milk tended (P ≤ 0.075) to increase over the same period of time. Increased yields were likely supported by the concurrent increase in dry matter intake (P = 0.036). Future work is needed to characterize the mode of action of this product within both the hindgut lumen and host, as well as investigate the potential differential responses between primiparous and multiparous animals over the course of lactation. Résumé Le gluconate de calcium incorporé au gras hydrogéné (HFCG — « hydrogenated fat-embedded calcium gluconate »), un mélange prébiotique conçu pour cibler l’intestin postérieur, a amélioré les rendements de lait et des composantes, lorsqu’ajoutés comme supplément auprès des vaches en mi-lactation, probablement imputable à une santé améliorée de l’intestin postérieur. L’objectif de cette étude était d’évaluer les réponses de production au HFCG, lorsque donné aux bovins laitiers sur une lactation complète. Soixante-quatorze vaches holsteins (21 primipares, 53 multipares) ont été utilisées dans un design expérimental à bloc complètement aléatoire comparant la supplémentation avec soit le HFCG (approximativement 16 g/jour du supplément, livrant approximativement 6,4 g de l’ingrédient actif) ou un témoin négatif, à partir de 21 jours avant le vêlage jusqu’à la fin de la lactation. Chez les bovins multipares avec suppléments de HFCG, le rendement moyen quotidien en protéines du lait (P = 0,037) était augmenté durant les 8 premières semaines de lactation, tandis que les rendements moyens quotidiens de gras du lait et de lait corrigé pour le gras et l’énergie tendaient (P ≤ 0,075) a augmenter au cours de la même période de temps. Les rendements améliorés étaient probablement supportés par l’augmentation simultanée de la consommation de matières sèches (P = 0,036). Des études ultérieures sont nécessaires afin de caractériser le mode d’action de ce produit dans le lumen de l’intestin postérieur et l’hôte, ainsi que pour étudier les réponses différentielles potentielles entre les animaux primipares et multipares au cours de la lactation. [Traduit par la Rédaction]

[1]  Christine R. Wells SAS for Mixed Models: Introduction and Basic Applications , 2021, The American Statistician.

[2]  F. Schenkel,et al.  Associations between feed efficiency and aspects of lactation curves in primiparous Holstein dairy cattle. , 2021, Journal of dairy science.

[3]  J. Daniel,et al.  Effects of supplemental calcium gluconate embedded in a hydrogenated fat matrix on lactation, digestive, and metabolic variables in dairy cattle. , 2021, Journal of dairy science.

[4]  E. Humer,et al.  Effect of an intramammary lipopolysaccharide challenge on the hindgut microbial composition and fermentation of dairy cattle experiencing intermittent subacute ruminal acidosis. , 2021, Journal of dairy science.

[5]  J. Dijkstra,et al.  Abomasal infusion of ground corn and ammonium chloride in early-lactating Holstein-Friesian dairy cows to induce hindgut and metabolic acidosis. , 2021, Journal of dairy science.

[6]  M. Carson,et al.  231 Effect of fat-embedded calcium gluconate on lactation performance in high-yielding multiparous dairy cows in a commercial dairy setting , 2020, Journal of Animal Science.

[7]  J. Michiels,et al.  L’acide gluconique améliore les performances des porcelets nouvellement sevrés associées avec des modifications au niveau du microbiote intestinal et de la fermentation , 2020 .

[8]  F. Schenkel,et al.  The dynamic behavior of feed efficiency in primiparous dairy cattle. , 2019, Journal of dairy science.

[9]  M. Carson,et al.  PSXII-42 The lactational response in dairy cows to supplementation of calcium gluconate embedded in a fat matrix , 2019 .

[10]  L. Mcknight,et al.  Feeding and postruminal infusion of calcium gluconate to lactating dairy cows , 2019, Canadian Journal of Animal Science.

[11]  M. Carson,et al.  Postruminal infusion of calcium gluconate increases milk fat production and alters fecal volatile fatty acid profile in lactating dairy cows. , 2019, Journal of dairy science.

[12]  Defa Li,et al.  Butyrate: A Double-Edged Sword for Health? , 2018, Advances in nutrition.

[13]  L. Baumgard,et al.  Glucose requirements of an activated immune system in lactating Holstein cows. , 2017, Journal of dairy science.

[14]  O. Martin,et al.  Modelling impacts of performance on the probability of reproducing, and thereby on productive lifespan, allow prediction of lifetime efficiency in dairy cows. , 2016, Animal : an international journal of animal bioscience.

[15]  T. Shimosato,et al.  Effect of Probiotics/Prebiotics on Cattle Health and Productivity , 2015, Microbes and environments.

[16]  Barbara M. Bakker,et al.  The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism , 2013, Journal of Lipid Research.

[17]  C. Bunchasak,et al.  Comparative Effects of Sodium Gluconate, Mannan Oligosaccharide and Potassium Diformate on Growth Performances and Small Intestinal Morphology of Nursery Pigs , 2011 .

[18]  F. Gaggìa,et al.  Probiotics and prebiotics in animal feeding for safe food production. , 2010, International journal of food microbiology.

[19]  J. Dijkstra,et al.  Evaluation of a mechanistic lactation model using cow, goat and sheep data , 2010, The Journal of Agricultural Science.

[20]  P. VanRaden,et al.  Modeling extended lactations of Holsteins. , 2007, Journal of dairy science.

[21]  K. Ushida,et al.  Stimulation of butyrate production through the metabolic interaction among lactic acid bacteria, Lactobacillus acidophilus, and lactic acid‐utilizing bacteria, Megasphaera elsdenii, in porcine cecal digesta , 2006 .

[22]  M. Moschini,et al.  Effect of gluconic acid on piglet growth performance, intestinal microflora, and intestinal wall morphology. , 2006, Journal of animal science.

[23]  Craig B. Thompson,et al.  Fuel feeds function: energy metabolism and the T-cell response , 2005, Nature Reviews Immunology.

[24]  M. Roberfroid,et al.  Dietary modulation of the human colonic microbiota: updating the concept of prebiotics , 2004, Nutrition Research Reviews.

[25]  K. Ushida,et al.  Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria. , 2002, The Journal of nutrition.

[26]  J France,et al.  A model to describe growth patterns of the mammary gland during pregnancy and lactation. , 1997, Journal of dairy science.

[27]  A. Bell Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. , 1995, Journal of animal science.

[28]  T. Mitsuoka,et al.  Effects of gluconic acid on human faecal bacteria , 1994 .

[29]  J. Pedersen,et al.  A Nordic proposal for an energy corrected milk (ECM) formula , 1991 .

[30]  W. L. Gaines AN EFFICIENCY FORMULA FOR DAIRY COWS. , 1928, Science.