Efficient fault‐tolerant logical Hadamard gates implementation in Reed–Muller quantum codes
暂无分享,去创建一个
Changxing Pei | Changxing Pei | Li Niu | LiLi Zhu | Dong-Xiao Quan | Dongxiao Quan | Dongxiao Quan | Changxing Pei | Lili Zhu | Li Niu | Lili Zhu | Li Niu
[1] H. Bombin,et al. Topological subsystem codes , 2009, 0908.4246.
[2] Ben Reichardt,et al. Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.
[3] D. Leung,et al. Methodology for quantum logic gate construction , 2000, quant-ph/0002039.
[4] A. Steane. Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[5] R. Raussendorf. Key ideas in quantum error correction , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[6] Rui Chao,et al. Quantum Error Correction with Only Two Extra Qubits. , 2017, Physical review letters.
[7] B. Sanders,et al. Fault-tolerant conversion between adjacent Reed–Muller quantum codes based on gauge fixing , 2017, 1703.03860.
[8] Michael E. Beverland,et al. Universal transversal gates with color codes: A simplified approach , 2014, 1410.0069.
[9] Steane,et al. Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.
[10] Austin G. Fowler,et al. Fault-tolerant quantum error correction code conversion , 2011, Quantum Inf. Comput..
[11] H. Bombin,et al. Dimensional Jump in Quantum Error Correction , 2014, 1412.5079.
[12] David Poulin,et al. Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. , 2014, Physical review letters.
[13] K. B. Whaley,et al. Robustness of Decoherence-Free Subspaces for Quantum Computation , 1999 .
[14] Andrew W. Cross,et al. Subsystem stabilizer codes cannot have a universal set of transversal gates for even one encoded qudit , 2008, 0801.2360.
[15] Andrew W. Cross,et al. Doubled Color Codes , 2015, 1509.03239.
[16] Andrew Steane,et al. Active Stabilization, Quantum Computation, and Quantum State Synthesis , 1997 .
[17] Stephen D. Bartlett,et al. Stacked codes: Universal fault-tolerant quantum computation in a two-dimensional layout , 2015, 1509.04255.
[18] Ben W. Reichardt,et al. Fault-tolerant quantum error correction for Steane’s seven-qubit color code with few or no extra qubits , 2018, Quantum Science and Technology.
[19] Adam Paetznick,et al. Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.
[20] Li Niu,et al. Fault-Tolerant Logical Hadamard Gates Implementation in Reed-Muller Quantum Codes , 2019, 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT).
[21] John Preskill,et al. Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..
[22] Bryan Eastin,et al. Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.
[23] Byung-Soo Choi,et al. Dual-code quantum computation model , 2015, Quantum Inf. Process..
[24] Travis S. Humble,et al. Quantum supremacy using a programmable superconducting processor , 2019, Nature.
[25] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[26] Byung-Soo Choi,et al. Fault-tolerant conversion between stabilizer codes by Clifford operations , 2015, 1511.02596.
[27] Andrew M. Steane. Quantum Reed-Muller codes , 1999, IEEE Trans. Inf. Theory.
[28] Andrew W. Cross,et al. Transversality Versus Universality for Additive Quantum Codes , 2007, IEEE Transactions on Information Theory.