Vertex Sparsifiers for c-Edge Connectivity

We show the existence of O(f(c)k) sized vertex sparsifiers that preserve all edge-connectivity values up to c between a set of k terminal vertices, where f(c) is a function that only depends on c, the edge-connectivity value. This construction is algorithmic: we also provide an algorithm whose running time depends linearly on k, but exponentially in c. It implies that for constant values of c, an offline sequence of edge insertions/deletions and c-edge-connectivity queries can be answered in polylog time per operation. These results are obtained by combining structural results about minimum terminal separating cuts in undirected graphs with recent developments in expander decomposition based methods for finding small vertex/edge cuts in graphs.

[1]  Robert Krauthgamer,et al.  Vertex Sparsifiers: New Results from Old Techniques , 2010, SIAM J. Comput..

[2]  Adam Karczmarz,et al.  Fast and Simple Connectivity in Graph Timelines , 2015, WADS.

[3]  Richard Peng,et al.  Optimal Offline Dynamic 2, 3-Edge/Vertex Connectivity , 2017, WADS.

[4]  Konstantin Makarychev,et al.  Metric extension operators, vertex sparsifiers and Lipschitz extendability , 2016 .

[5]  Liu Yang,et al.  A Faster Local Algorithm for Detecting Bounded-Size Cuts with Applications to Higher-Connectivity Problems , 2019, ArXiv.

[6]  Toshihide Ibaraki,et al.  A linear-time algorithm for finding a sparsek-connected spanning subgraph of ak-connected graph , 1992, Algorithmica.

[7]  Alek Vainshtein,et al.  The connectivity carcass of a vertex subset in a graph and its incremental maintenance , 1994, STOC '94.

[8]  Richard Peng,et al.  Fully dynamic spectral vertex sparsifiers and applications , 2019, STOC.

[9]  Piotr Sankowski,et al.  Reachability in graph timelines , 2013, ITCS '13.

[10]  Frank Thomson Leighton,et al.  Vertex Sparsifiers and Abstract Rounding Algorithms , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[11]  Sushant Sachdeva,et al.  Approximate Gaussian Elimination for Laplacians - Fast, Sparse, and Simple , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[12]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 1998, STOC '98.

[13]  Zvi Galil,et al.  Fully dynamic algorithms for edge connectivity problems , 1991, STOC '91.

[14]  Jeffery R. Westbrook,et al.  Maintaining the Classes of 4-Edge-Connectivity in a Graph On-Line , 1998, Algorithmica.

[15]  Stefan Fafianie,et al.  Preprocessing under uncertainty , 2016, STACS.

[16]  John Peebles,et al.  Sampling random spanning trees faster than matrix multiplication , 2016, STOC.

[17]  D. R. Fulkerson,et al.  On edge-disjoint branchings , 1976, Networks.

[18]  Richard Peng,et al.  On Fully Dynamic Graph Sparsifiers , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[19]  Di Wang,et al.  Expander Decomposition and Pruning: Faster, Stronger, and Simpler , 2018, SODA.

[20]  Pan Peng,et al.  The Power of Vertex Sparsifiers in Dynamic Graph Algorithms , 2017, ESA.

[21]  Stefan Fafianie,et al.  Preprocessing Under Uncertainty: Matroid Intersection , 2016, MFCS.

[22]  Yang Li,et al.  Dynamic Sketching for Graph Optimization Problems with Applications to Cut-Preserving Sketches , 2015, FSTTCS.

[23]  Thatchaphol Saranurak,et al.  Breaking quadratic time for small vertex connectivity and an approximation scheme , 2019, STOC.

[24]  Robert Krauthgamer,et al.  Refined Vertex Sparsifiers of Planar Graphs , 2020, SIAM J. Discret. Math..

[25]  Richard Cole,et al.  A fast algorithm for computing steiner edge connectivity , 2003, STOC '03.

[26]  Harald Räcke,et al.  Vertex Sparsification in Trees , 2016, WAOA.

[27]  Pan Peng,et al.  Improved Guarantees for Vertex Sparsification in Planar Graphs , 2017, ESA.

[28]  Alek Vainshtein,et al.  Locally orientable graphs, cell structures, and a new algorithm for the incremental maintenance of connectivity carcasses , 1995, SODA '95.

[29]  Thatchaphol Saranurak,et al.  Computing and Testing Small Vertex Connectivity in Near-Linear Time and Queries , 2019, ArXiv.

[30]  Stefan Kratsch,et al.  Representative Sets and Irrelevant Vertices: New Tools for Kernelization , 2011, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[31]  David Eppstein Offline Algorithms for Dynamic Minimum Spanning Tree Problems , 1994, J. Algorithms.

[32]  Pan Peng,et al.  Dynamic Effective Resistances and Approximate Schur Complement on Separable Graphs , 2018, ESA.