Generation of multiparticle entangled states of nitrogen-vacancy centers with carbon nanotubes

We propose an efficient scheme for generating multiparticle entangled states between two arrays of nitrogen-vacancy centers that interact with two magnetically coupled carbon nanotubes, respectively. We show that through adjusting the external driving microwave fields and the dc currents flowing through the nanotube mechanical resonators, the multiparticle entanglement between the separated arrays of NV centers can be engineered and tuned dynamically. The experimental feasibility of this scheme is analyzed, as well as the method to produce the NOON states of phonon modes is presented using the generated multiparticle entangled states. This scheme may have interesting applications for quantum information processing.

[1]  M. Lončar,et al.  Dynamic actuation of single-crystal diamond nanobeams , 2014, 1408.5822.

[2]  Xuedong Hu,et al.  Quantum memory and gates using a Λ -type quantum emitter coupled to a chiral waveguide , 2018, Physical Review A.

[3]  Jose A Garrido,et al.  Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene. , 2015, Nature nanotechnology.

[4]  J. Twamley,et al.  Generating spin squeezing states and Greenberger-Horne-Zeilinger entanglement using a hybrid phonon-spin ensemble in diamond , 2016, 1605.03693.

[5]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[6]  A. Parkins,et al.  Dynamical quantum phase transitions in the dissipative Lipkin-Meshkov-Glick model with proposed realization in optical cavity QED. , 2007, Physical review letters.

[7]  G. Rastelli,et al.  Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current. , 2014, Physical review letters.

[8]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[9]  Fuli Li,et al.  Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system , 2017, 1712.06234.

[10]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[11]  M. Tsutsui,et al.  Electrical breakdown of short multiwalled carbon nanotubes , 2006 .

[12]  P. Cappellaro,et al.  Selective Decoupling and Hamiltonian Engineering in Dipolar Spin Networks. , 2017, Physical review letters.

[13]  Shi-Biao Zheng Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion , 2003, 1202.5384.

[14]  Shi-Liang Zhu,et al.  Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. , 2005, Physical review letters.

[15]  Fuli Li,et al.  Preparing entangled states between two NV centers via the damping of nanomechanical resonators , 2017, Scientific Reports.

[16]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[17]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[18]  Chui-Ping Yang,et al.  Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit , 2011, 1106.3237.

[19]  Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity. , 2017, Nano letters.

[20]  P. Rabl,et al.  Harvesting Multiqubit Entanglement from Ultrastrong Interactions in Circuit Quantum Electrodynamics. , 2017, Physical review letters.

[21]  David Reeb,et al.  Scalable Dissipative Preparation of Many-Body Entanglement. , 2015, Physical review letters.

[22]  F. Dolde,et al.  High sensitivity magnetic imaging using an array of spins in diamond. , 2010, The Review of scientific instruments.

[23]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[24]  Y. Blanter,et al.  Carbon nanotubes as nanoelectromechanical systems , 2003 .

[25]  Qiong Chen,et al.  Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators , 2011 .

[26]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[27]  Vibhor Singh,et al.  Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. , 2014, Nature nanotechnology.

[28]  Guang-Can Guo,et al.  Strongly Coupled Nanotube Electromechanical Resonators. , 2016, Nano letters.

[29]  G. Burkard,et al.  Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. , 2011, Physical review letters.

[30]  Kenneth W. Lee,et al.  Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator , 2014, Nature communications.

[31]  R. Betzholz,et al.  Entangling distant solid-state spins via thermal phonons , 2017, 1710.01455.

[32]  P. Ovartchaiyapong,et al.  High quality factor single-crystal diamond mechanical resonators , 2012 .

[33]  Xiang‐Bin Wang,et al.  Strong coupling between two distant electronic spins via a nanomechanical resonator , 2010 .

[34]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[35]  Fu-Li Li,et al.  Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers , 2011, 1110.6718.

[36]  Patrick Maletinsky,et al.  Fabrication of all diamond scanning probes for nanoscale magnetometry. , 2016, The Review of scientific instruments.

[37]  J. Plaza,et al.  Strong coupling between mechanical modes in a nanotube resonator. , 2012, Physical review letters.

[38]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[39]  J. Güttinger,et al.  Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS , 2016, Nature Communications.

[40]  Jun-Hong An,et al.  Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities , 2013, 1301.7494.

[41]  L. Childress,et al.  Supporting Online Material for , 2006 .

[42]  R. Rach,et al.  Theoretical modeling of the Casimir force-induced instability in freestanding nanowires with circular cross-section , 2014 .

[43]  Z. Kurucz,et al.  Parametric amplification of the mechanical vibrations of a suspended nanowire by magnetic coupling to a Bose-Einstein condensate. , 2013, Physical review letters.

[44]  F. Nori,et al.  Hybrid quantum device with a carbon nanotube and a flux qubit for dissipative quantum engineering , 2016, Physical Review B.

[45]  Shi-Biao Zheng,et al.  One-step synthesis of multiatom Greenberger-Horne-Zeilinger states. , 2001, Physical review letters.

[46]  Klaus Mølmer,et al.  Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. , 2008, Physical review letters.

[47]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[48]  Z. Yin,et al.  Universal quantum gates between nitrogen-vacancy centers in a levitated nanodiamond , 2018, Physical Review A.

[49]  Fuli Li,et al.  Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions , 2018, Physical Review A.

[50]  S. Shikata,et al.  Negatively charged nitrogen-vacancy centers in a 5 nm thin 12C diamond film. , 2013, Nano letters.

[51]  Ya Wang,et al.  Coherence-protected quantum gate by continuous dynamical decoupling in diamond. , 2012, Physical review letters.

[52]  Nanomechanical resonant structures in single-crystal diamond , 2013, 1309.1834.

[53]  M. V. Gurudev Dutt,et al.  Strong Magnetic Coupling Between an Electronic Spin Qubit and a Mechanical Resonator , 2008, 0806.3606.

[54]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[55]  H. V. D. van der Zant,et al.  Bending-mode vibration of a suspended nanotube resonator. , 2006, Nano letters.

[56]  D. Budker,et al.  Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond , 2015, Nature communications.

[57]  E. Wu,et al.  Entanglement of two nitrogen-vacancy ensembles via a nanotube , 2020 .

[58]  Sungkun Hong,et al.  Coherent, mechanical control of a single electronic spin. , 2012, Nano letters.

[59]  P. Zoller,et al.  A quantum spin transducer based on nanoelectromechanical resonator arrays , 2009, 0908.0316.

[60]  Maciej Lewenstein,et al.  Harnessing vacuum forces for quantum sensing of graphene motion. , 2013, Physical review letters.

[61]  Luming Duan,et al.  Colloquium: Quantum networks with trapped ions , 2010 .

[62]  F. Nori,et al.  Proposal to test quantum wave-particle superposition on massive mechanical resonators , 2018, npj Quantum Information.

[63]  C. Degen,et al.  Single-crystal diamond nanomechanical resonators with quality factors exceeding one million , 2012, Nature Communications.

[64]  P. Domokos,et al.  Quantum galvanometer by interfacing a vibrating nanowire and cold atoms. , 2012, Nano letters.

[65]  H. V. D. Zant,et al.  Mechanical systems in the quantum regime , 2011, 1106.2060.

[66]  Franco Nori,et al.  Interqubit coupling mediated by a high-excitation-energy quantum object , 2007, 0709.0237.

[67]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[68]  G. Guo,et al.  Robust scalable architecture for a hybrid spin-mechanical quantum entanglement system , 2019 .

[69]  C. Zu,et al.  Experimental realization of universal geometric quantum gates with solid-state spins , 2014, Nature.

[70]  C. Degen,et al.  Nanoscale Imaging of Current Density with a Single-Spin Magnetometer. , 2016, Nano letters.

[71]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[72]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[73]  J. Güttinger,et al.  Coupling graphene mechanical resonators to superconducting microwave cavities. , 2014, Nano letters.

[74]  Jonathan P. Dowling,et al.  A Bootstrapping Approach for Generating Maximally Path-Entangled Photon States , 2007 .

[75]  Jonathan P Dowling,et al.  Bootstrapping approach for generating maximally path-entangled photon states. , 2007, Physical review letters.

[76]  L. Duan,et al.  Generation of massive entanglement through an adiabatic quantum phase transition in a spinor condensate. , 2013, Physical review letters.

[77]  Guang-Can Guo,et al.  Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity , 2018, Nature Communications.

[78]  Fuli Li,et al.  Interfacing a Topological Qubit with a Spin Qubit in a Hybrid Quantum System , 2019, Physical Review Applied.

[79]  Ronald Hanson,et al.  Coherent manipulation of single spins in semiconductors , 2008, Nature.

[80]  Shi-Biao Zheng Quantum-information processing and multiatom-entanglement engineering with a thermal cavity , 2002, 1202.5382.

[81]  F. Nori,et al.  Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers , 2013, 1301.1504.

[82]  J. Rogers,et al.  Improved Density in Aligned Arrays of Single‐Walled Carbon Nanotubes by Sequential Chemical Vapor Deposition on Quartz , 2010, Advanced materials.

[83]  Fuli Li,et al.  Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system. , 2010, Optics express.

[84]  S. Cronin,et al.  Clamping instability and van der Waals forces in carbon nanotube mechanical resonators. , 2014, Nano letters.

[85]  P. Avouris,et al.  Current saturation and electrical breakdown in multiwalled carbon nanotubes. , 2001, Physical review letters.

[86]  B. Dakić,et al.  Macroscopic Superpositions as Quantum Ground States. , 2016, Physical review letters.

[87]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[88]  J. Güttinger,et al.  Nanotube mechanical resonators with quality factors of up to 5 million. , 2014, Nature nanotechnology.

[89]  Yun-Feng Xiao,et al.  Hybrid Quantum Device Based on N V Centers in Diamond Nanomechanical Resonators Plus Superconducting Waveguide Cavities , 2015, 1503.02437.

[90]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[91]  Franco Nori,et al.  Hybrid Quantum Device with Nitrogen-Vacancy Centers in Diamond Coupled to Carbon Nanotubes. , 2016, Physical review letters.