FOURIER-MUKAI FUNCTORS: A SURVEY

This paper surveys some recent results about Fourier-Mukai functors. In particular, given an exact functor between the bounded derived categories of coherent sheaves on two smooth projective varieties, we deal with the question whether this functor is of Fourier-Mukai type. Several related questions are answered and many open problems are stated.

[1]  Christian Bohning,et al.  On the derived category of the classical Godeaux surface , 2012, 1206.1830.

[2]  D. Orlov,et al.  DOES FULL IMPLY FAITHFUL , 2011, 1101.5931.

[3]  Shinnosuke Okawa Semi-orthogonal decomposability of the derived category of a curve , 2011, 1104.4902.

[4]  Anatoly Preygel Thom-Sebastiani & Duality for Matrix Factorizations , 2011, 1101.5834.

[5]  T. Pantev,et al.  *-Quantizations of Fourier–Mukai Transforms , 2011 .

[6]  K. Oguiso Bounded derived categories of very simple manifolds , 2010, 1002.2809.

[7]  Arend Bayer,et al.  The space of stability conditions on the local projective plane , 2009, 0912.0043.

[8]  A. Kuznetsov Base change for semiorthogonal decompositions , 2007, Compositio Mathematica.

[9]  P. Stellari,et al.  Non-uniqueness of Fourier–Mukai kernels , 2010, 1009.5577.

[10]  D. Orlov,et al.  Uniqueness of enhancement for triangulated categories , 2009, 0908.4187.

[11]  H. Uehara,et al.  Stability Conditions on An-Singularities , 2010 .

[12]  M. Ballard Equivalences of derived categories of sheaves on quasi-projective schemes , 2009, 0905.3148.

[13]  Bertrand Toën,et al.  Dénombrabilité des classes d’équivalences dérivées de variétés algébriques , 2009 .

[14]  D. Nadler,et al.  Integral Transforms and Drinfeld Centers in Derived Algebraic Geometry , 2008, 0805.0157.

[15]  Emanuele Macrì,et al.  Infinitesimal Derived Torelli Theorem for K3 surfaces , 2008, 0804.2552.

[16]  Emanuele Macrì,et al.  Automorphisms and autoequivalences of generic analytic K3 surfaces , 2007, math/0702848.

[17]  D. Huybrechts,et al.  Derived equivalences of K3 surfaces and orientation , 2007, 0710.1645.

[18]  S. Willerton,et al.  The Mukai pairing, I: a categorical approach , 2007, 0707.2052.

[19]  J. Lipman LECTURES ON LOCAL COHOMOLOGY AND DUALITY , 2007 .

[20]  A. Kuznetsov Lefschetz decompositions and categorical resolutions of singularities , 2006, math/0609240.

[21]  P. Stellari,et al.  Twisted Fourier–Mukai functors , 2006, math/0605229.

[22]  Bernhard Keller,et al.  On differential graded categories , 2006, math/0601185.

[23]  Daniel Huybrechts,et al.  Fourier-Mukai transforms in algebraic geometry , 2006 .

[24]  A. Kuznetsov Homological projective duality , 2005, math/0507292.

[25]  A. Căldăraru,et al.  Derived categories of sheaves: a skimming , 2005, math/0501094.

[26]  D. H. Ruipérez,et al.  Fourier Mukai transforms and applications to string theory , 2004, math/0412328.

[27]  H. Uehara,et al.  Autoequivalences of derived categories on the minimal resolutions of An-singularities on surfaces , 2004, math/0409151.

[28]  D. Huybrechts,et al.  Equivalences of twisted K3 surfaces , 2004, math/0409030.

[29]  B. Toën The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.

[30]  M. Bergh,et al.  Handbook of Tilting Theory: Fourier-Mukai transforms , 2004, math/0402043.

[31]  M. Larsen,et al.  Grothendieck ring of pretriangulated categories , 2004, math/0401009.

[32]  M. Verbitsky Coherent sheaves on generic compact tori , 2003, math/0310329.

[33]  Raphael Rouquier,et al.  Dimensions of triangulated categories , 2003, math/0310134.

[34]  A. Căldăraru The Mukai pairing, II: the Hochschild-Kostant-Rosenberg isomorphism , 2003, math/0308080.

[35]  Y. Kawamata Equivalences of derived catgories of sheaves on smooth stacks , 2002, math/0210439.

[36]  V. Drinfeld DG quotients of DG categories , 2002, math/0210114.

[37]  M. Verbitsky Coherent sheaves on general K3 surfaces and tori , 2002, math/0205210.

[38]  P. Stellari Some Remarks about the FM-partners of K3 Surfaces with Picard Numbers 1 and 2 , 2002, math/0205126.

[39]  Y. Kawamata D-Equivalence and K-Equivalence , 2002, math/0205287.

[40]  M. Bergh,et al.  Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.

[41]  S. Yau,et al.  Autoequivalences of derived category of a K3 surface and monodromy transformations , 2002, math/0201047.

[42]  K. Oguiso K3 surfaces via almost-primes , 2001, math/0110282.

[43]  Gennady Lybeznik Local cohomology and its applications , 2001 .

[44]  A. Maciocia,et al.  Complex surfaces with equivalent derived categories , 2001, 1909.08968.

[45]  T. Bridgeland Equivalences of Triangulated Categories and Fourier–Mukai Transforms , 1998, math/9809114.

[46]  D. Orlov,et al.  Derived categories of coherent sheaves on Abelian varieties and equivalences between them , 1997, alg-geom/9712017.

[47]  D. Orlov,et al.  Equivalences of derived categories and K3 surfaces , 1996, alg-geom/9606006.

[48]  A. Bondal,et al.  Semiorthogonal decompositions for algebraic varieties. , 1995 .

[49]  Mikhail Kapranov,et al.  REPRESENTABLE FUNCTORS, SERRE FUNCTORS, AND MUTATIONS , 1990 .

[50]  向井 茂 Duality between D(X) and D(X) with its application to Picard sheaves , 1982 .

[51]  S. Mukai Duality between D(X) and with its application to picard sheaves , 1981, Nagoya Mathematical Journal.