FOURIER-MUKAI FUNCTORS: A SURVEY
暂无分享,去创建一个
[1] Christian Bohning,et al. On the derived category of the classical Godeaux surface , 2012, 1206.1830.
[2] D. Orlov,et al. DOES FULL IMPLY FAITHFUL , 2011, 1101.5931.
[3] Shinnosuke Okawa. Semi-orthogonal decomposability of the derived category of a curve , 2011, 1104.4902.
[4] Anatoly Preygel. Thom-Sebastiani & Duality for Matrix Factorizations , 2011, 1101.5834.
[5] T. Pantev,et al. *-Quantizations of Fourier–Mukai Transforms , 2011 .
[6] K. Oguiso. Bounded derived categories of very simple manifolds , 2010, 1002.2809.
[7] Arend Bayer,et al. The space of stability conditions on the local projective plane , 2009, 0912.0043.
[8] A. Kuznetsov. Base change for semiorthogonal decompositions , 2007, Compositio Mathematica.
[9] P. Stellari,et al. Non-uniqueness of Fourier–Mukai kernels , 2010, 1009.5577.
[10] D. Orlov,et al. Uniqueness of enhancement for triangulated categories , 2009, 0908.4187.
[11] H. Uehara,et al. Stability Conditions on An-Singularities , 2010 .
[12] M. Ballard. Equivalences of derived categories of sheaves on quasi-projective schemes , 2009, 0905.3148.
[13] Bertrand Toën,et al. Dénombrabilité des classes d’équivalences dérivées de variétés algébriques , 2009 .
[14] D. Nadler,et al. Integral Transforms and Drinfeld Centers in Derived Algebraic Geometry , 2008, 0805.0157.
[15] Emanuele Macrì,et al. Infinitesimal Derived Torelli Theorem for K3 surfaces , 2008, 0804.2552.
[16] Emanuele Macrì,et al. Automorphisms and autoequivalences of generic analytic K3 surfaces , 2007, math/0702848.
[17] D. Huybrechts,et al. Derived equivalences of K3 surfaces and orientation , 2007, 0710.1645.
[18] S. Willerton,et al. The Mukai pairing, I: a categorical approach , 2007, 0707.2052.
[19] J. Lipman. LECTURES ON LOCAL COHOMOLOGY AND DUALITY , 2007 .
[20] A. Kuznetsov. Lefschetz decompositions and categorical resolutions of singularities , 2006, math/0609240.
[21] P. Stellari,et al. Twisted Fourier–Mukai functors , 2006, math/0605229.
[22] Bernhard Keller,et al. On differential graded categories , 2006, math/0601185.
[23] Daniel Huybrechts,et al. Fourier-Mukai transforms in algebraic geometry , 2006 .
[24] A. Kuznetsov. Homological projective duality , 2005, math/0507292.
[25] A. Căldăraru,et al. Derived categories of sheaves: a skimming , 2005, math/0501094.
[26] D. H. Ruipérez,et al. Fourier Mukai transforms and applications to string theory , 2004, math/0412328.
[27] H. Uehara,et al. Autoequivalences of derived categories on the minimal resolutions of An-singularities on surfaces , 2004, math/0409151.
[28] D. Huybrechts,et al. Equivalences of twisted K3 surfaces , 2004, math/0409030.
[29] B. Toën. The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.
[30] M. Bergh,et al. Handbook of Tilting Theory: Fourier-Mukai transforms , 2004, math/0402043.
[31] M. Larsen,et al. Grothendieck ring of pretriangulated categories , 2004, math/0401009.
[32] M. Verbitsky. Coherent sheaves on generic compact tori , 2003, math/0310329.
[33] Raphael Rouquier,et al. Dimensions of triangulated categories , 2003, math/0310134.
[34] A. Căldăraru. The Mukai pairing, II: the Hochschild-Kostant-Rosenberg isomorphism , 2003, math/0308080.
[35] Y. Kawamata. Equivalences of derived catgories of sheaves on smooth stacks , 2002, math/0210439.
[36] V. Drinfeld. DG quotients of DG categories , 2002, math/0210114.
[37] M. Verbitsky. Coherent sheaves on general K3 surfaces and tori , 2002, math/0205210.
[38] P. Stellari. Some Remarks about the FM-partners of K3 Surfaces with Picard Numbers 1 and 2 , 2002, math/0205126.
[39] Y. Kawamata. D-Equivalence and K-Equivalence , 2002, math/0205287.
[40] M. Bergh,et al. Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.
[41] S. Yau,et al. Autoequivalences of derived category of a K3 surface and monodromy transformations , 2002, math/0201047.
[42] K. Oguiso. K3 surfaces via almost-primes , 2001, math/0110282.
[43] Gennady Lybeznik. Local cohomology and its applications , 2001 .
[44] A. Maciocia,et al. Complex surfaces with equivalent derived categories , 2001, 1909.08968.
[45] T. Bridgeland. Equivalences of Triangulated Categories and Fourier–Mukai Transforms , 1998, math/9809114.
[46] D. Orlov,et al. Derived categories of coherent sheaves on Abelian varieties and equivalences between them , 1997, alg-geom/9712017.
[47] D. Orlov,et al. Equivalences of derived categories and K3 surfaces , 1996, alg-geom/9606006.
[48] A. Bondal,et al. Semiorthogonal decompositions for algebraic varieties. , 1995 .
[49] Mikhail Kapranov,et al. REPRESENTABLE FUNCTORS, SERRE FUNCTORS, AND MUTATIONS , 1990 .
[50] 向井 茂. Duality between D(X) and D(X) with its application to Picard sheaves , 1982 .
[51] S. Mukai. Duality between D(X) and with its application to picard sheaves , 1981, Nagoya Mathematical Journal.