The hourglass effect in hierarchical dependency networks

Many hierarchically modular systems are structured in a way that resembles an hourglass. This "hourglass effect" means that the system generates many outputs from many inputs through a relatively small number of intermediate modules that are critical for the operation of the entire system, referred to as the waist of the hourglass. We investigate the hourglass effect in general, not necessarily layered, hierarchical dependency networks. Our analysis focuses on the number of source-to-target dependency paths that traverse each vertex, and it identifies the core of a dependency network as the smallest set of vertices that collectively cover almost all dependency paths. We then examine if a given network exhibits the hourglass property or not, comparing its core size with a "flat" (i.e., non-hierarchical) network that preserves the source dependencies of each target in the original network. As a possible explanation for the hourglass effect, we propose the Reuse Preference (RP) model that captures the bias of new modules to reuse intermediate modules of similar complexity instead of connecting directly to sources or low complexity modules. We have applied the proposed framework in a diverse set of dependency networks from technological, natural and information systems, showing that all these networks exhibit the general hourglass property but to a varying degree and with different waist characteristics.

[1]  Constantine Dovrolis,et al.  The evolution of layered protocol stacks leads to an hourglass-shaped architecture , 2011, SIGCOMM 2011.

[2]  R. Solé,et al.  Self-organization versus hierarchy in open-source social networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  D. Tautz,et al.  A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns , 2010, Nature.

[4]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[5]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[6]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[7]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[8]  M. Gerstein,et al.  Analysis of diverse regulatory networks in a hierarchical context shows consistent tendencies for collaboration in the middle levels , 2010, Proceedings of the National Academy of Sciences.

[9]  U. Alon,et al.  Spontaneous evolution of modularity and network motifs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Hierarchical Organization of Modularity in Metabolic Networks Supporting Online Material , 2002 .

[11]  Edward T. Bullmore,et al.  Modular and Hierarchically Modular Organization of Brain Networks , 2010, Front. Neurosci..

[12]  Kim B. Clark,et al.  Design Rules: The Power of Modularity , 2000 .

[13]  Diego Rasskin-Gutman,et al.  Modularity. Understanding the Development and Evolution of Natural Complex Systems , 2005 .

[14]  Kim B. Clark,et al.  Design Rules: The Power of Modularity Volume 1 , 1999 .

[15]  Andrew Kusiak,et al.  Modularity in design of products and systems , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[16]  E. David,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World , 2010 .

[17]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[18]  P. Holme Core-periphery organization of complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Jing Zhao,et al.  Hierarchical modularity of nested bow-ties in metabolic networks , 2006, BMC Bioinformatics.

[20]  Michalis Faloutsos,et al.  Graph-based analysis and prediction for software evolution , 2012, 2012 34th International Conference on Software Engineering (ICSE).

[21]  G. Caldarelli,et al.  Preferential attachment in the growth of social networks, the Internet encyclopedia wikipedia , 2007 .

[22]  J Doyle,et al.  Highly optimised global organisation of metabolic networks. , 2005, Systems biology.

[23]  I. Grosse,et al.  A transcriptomic hourglass in plant embryogenesis , 2012, Nature.

[24]  G. Wagner,et al.  The road to modularity , 2007, Nature Reviews Genetics.

[25]  David Lorge Parnas,et al.  The Modular Structure of Complex Systems , 1984, IEEE Transactions on Software Engineering.

[26]  Azer Bestavros,et al.  A Framework for the Evaluation and Management of Network Centrality , 2011, SDM.

[27]  Uri Alon,et al.  Varying environments can speed up evolution , 2007, Proceedings of the National Academy of Sciences.

[28]  B. Beutler,et al.  Inferences, questions and possibilities in Toll-like receptor signalling , 2004, Nature.

[29]  Christina D. Smolke,et al.  The metabolic pathway engineering handbook , 2010 .

[30]  Paulien Hogeweg,et al.  Material for : “ Evolution of networks for body plan patterning ; Interplay of modularity , robustness and evolvability ” , 2011 .

[31]  Susumu Goto,et al.  Data, information, knowledge and principle: back to metabolism in KEGG , 2013, Nucleic Acids Res..

[32]  Jayashankar M. Swaminathan,et al.  Modeling Supply Chain Dynamics: A Multiagent Approach , 1998 .

[33]  Charu C. Aggarwal,et al.  Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , 2016, KDD.

[34]  James H. Fowler,et al.  Abstract Available online at www.sciencedirect.com Social Networks 30 (2008) 16–30 The authority of Supreme Court precedent , 2022 .

[35]  Rainer Breitling,et al.  What is Systems Biology? , 2010, Front. Physiology.

[36]  Edda Klipp,et al.  Systems Biology , 1994 .

[37]  Hod Lipson,et al.  The evolutionary origins of modularity , 2012, Proceedings of the Royal Society B: Biological Sciences.

[38]  Mark Gerstein,et al.  The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics , 2007, PLoS Comput. Biol..

[39]  Eli Upfal,et al.  The Web as a graph , 2000, PODS.

[40]  Christina Smolke,et al.  The Metabolic Pathway Engineering Handbook : Tools and Applications , 2009 .

[41]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[42]  S. Redner,et al.  Network growth by copying. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Andreas Zell,et al.  BowTieBuilder: modeling signal transduction pathways , 2009, BMC Systems Biology.

[44]  Christoph H. Loch,et al.  Hierarchical Structure and Search in Complex Organizations , 2010, Manag. Sci..

[45]  Jean-Baptiste Mouret,et al.  The Evolutionary Origins of Hierarchy , 2015, PLoS Comput. Biol..

[46]  Roger Guimerà,et al.  Extracting the hierarchical organization of complex systems , 2007, Proceedings of the National Academy of Sciences.

[47]  Mark Gerstein,et al.  Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks , 2010, Proceedings of the National Academy of Sciences.

[48]  An-Ping Zeng,et al.  The Connectivity Structure, Giant Strong Component and Centrality of Metabolic Networks , 2003, Bioinform..

[49]  Martin G. Everett,et al.  Models of core/periphery structures , 2000, Soc. Networks.

[50]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[51]  Uri Alon,et al.  Evolution of Bow-Tie Architectures in Biology , 2014, PLoS Comput. Biol..

[52]  Tanita Casci Development: Hourglass theory gets molecular approval , 2011, Nature Reviews Genetics.

[53]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[54]  J. Kleinberg,et al.  Networks, Crowds, and Markets , 2010 .

[55]  Mason A. Porter,et al.  Core-Periphery Structure in Networks , 2012, SIAM J. Appl. Math..

[56]  H. Kitano,et al.  A comprehensive map of the toll-like receptor signaling network , 2006, Molecular systems biology.

[57]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[58]  C. Dovrolis,et al.  An explanatory evo-devo model for the developmental hourglass , 2013, F1000Research.

[59]  George J. Klir,et al.  Facets of Systems Science , 1991 .

[60]  Payam Siyari,et al.  Lexis: An Optimization Framework for Discovering the Hierarchical Structure of Sequential Data , 2016, KDD.

[61]  Mauro Pezzè,et al.  Proceedings of the 38th International Conference on Software Engineering , 2016, ICSE.

[62]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[63]  Jennifer Rexford,et al.  Future Internet architecture , 2010, Commun. ACM.

[64]  J. Doyle,et al.  Bow Ties, Metabolism and Disease , 2022 .

[65]  Christopher R. Myers,et al.  Software systems as complex networks: structure, function, and evolvability of software collaboration graphs , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  M. Gerstein,et al.  Genomic analysis of the hierarchical structure of regulatory networks , 2006, Proceedings of the National Academy of Sciences.

[67]  Sandeep Krishna,et al.  Large extinctions in an evolutionary model: The role of innovation and keystone species , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Melissa A. Schilling Toward a General Modular Systems Theory and Its Application to Interfirm Product Modularity , 2000 .

[69]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[70]  Stephanie Forrest,et al.  Email networks and the spread of computer viruses. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Kazuyuki Aihara,et al.  A large-scale study of link spam detection by graph algorithms , 2007, AIRWeb '07.

[72]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[73]  J. Fowler,et al.  Network Analysis and the Law: Measuring the Legal Importance of Precedents at the U.S. Supreme Court , 2007, Political Analysis.

[74]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  Dirk M. Lorenz,et al.  The emergence of modularity in biological systems. , 2011, Physics of life reviews.

[76]  Simon A. Levin,et al.  Evolution of a modular software network , 2011, Proceedings of the National Academy of Sciences.

[77]  Jon M. Kleinberg,et al.  The Web as a Graph: Measurements, Models, and Methods , 1999, COCOON.

[78]  Joaquín Goñi,et al.  On the origins of hierarchy in complex networks , 2013, Proceedings of the National Academy of Sciences.

[79]  Ling-Yun Wu,et al.  Structure and dynamics of core/periphery networks , 2013, J. Complex Networks.

[80]  HERBERT A. SIMON,et al.  The Architecture of Complexity , 1991 .

[81]  Stefano Battiston,et al.  The Network of Global Corporate Control , 2011, PloS one.

[82]  J. Stelling,et al.  Robustness of Cellular Functions , 2004, Cell.

[83]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..