Artificial Biochemistry

We model chemical and biochemical systems as collectives of interacting stochastic automata, with each automaton representing a molecule that undergoes state transitions. In this artificial biochemistry, automata interact by the equivalent of the law of mass action. We investigate several simple but intriguing automata collectives by stochastic simulation and by ODE analysis.

[1]  Luca Cardelli,et al.  A Correct Abstract Machine for the Stochastic Pi-calculus , 2004 .

[2]  Alan Bain Stochastic Calculus , 2007 .

[3]  Matthew Cook,et al.  Computation with finite stochastic chemical reaction networks , 2008, Natural Computing.

[4]  E. Shapiro,et al.  Cellular abstractions: Cells as computation , 2002, Nature.

[5]  H. Sauro,et al.  Quantitative analysis of signaling networks. , 2004, Progress in biophysics and molecular biology.

[6]  Walter Fontana,et al.  The Barrier of Objects: From Dynamical Systems to Bounded Organizations , 1996 .

[7]  Luca Cardelli,et al.  A Graphical Representation for Biological Processes in the Stochastic pi-Calculus , 2006, Trans. Comp. Sys. Biology.

[8]  Aviv Regev,et al.  The π-calculus as an Abstraction for Biomolecular Systems , 2004 .

[9]  S. Leibler,et al.  Mechanisms of noise-resistance in genetic oscillators , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Luca Cardelli,et al.  On process rate semantics , 2008, Theor. Comput. Sci..

[11]  Luca Cardelli,et al.  On the Computational Power of Biochemistry , 2008, AB.

[12]  Kristina Lerman,et al.  Automatically Modeling Group Behavior of Simple Agents , 2004 .

[13]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[14]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[15]  David Harel,et al.  Statecharts: A Visual Formalism for Complex Systems , 1987, Sci. Comput. Program..

[16]  Davide Sangiorgi,et al.  Communicating and Mobile Systems: the π-calculus, , 2000 .

[17]  Hiroaki Kitano,et al.  A graphical notation for biochemical networks , 2003 .

[18]  Kwang-Hyun Cho,et al.  Modeling and simulation of intracellular dynamics: choosing an appropriate framework , 2004, IEEE Transactions on NanoBioscience.

[19]  W. Huisinga,et al.  Solving the chemical master equation for monomolecular reaction systems analytically , 2006, Journal of mathematical biology.

[20]  Corrado Priami,et al.  Application of a stochastic name-passing calculus to representation and simulation of molecular processes , 2001, Inf. Process. Lett..

[21]  J. Bishop,et al.  Zero-order ultrasensitivity in the regulation of glycogen phosphorylase. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[22]  David Harel,et al.  Reactive Animation , 2002, FMCO.