Gain and loss of an intron in a protein-coding gene in Archaea: the case of an archaeal RNA pseudouridine synthase gene

BackgroundWe previously found the first examples of splicing of archaeal pre-mRNAs for homologs of the eukaryotic CBF5 protein (also known as dyskerin in humans) in Aeropyrum pernix, Sulfolobus solfataricus, S. tokodaii, and S. acidocaldarirus, and also showed that crenarchaeal species in orders Desulfurococcales and Sulfolobales, except for Hyperthermus butylicus, Pyrodictium occultum, Pyrolobus fumarii, and Ignicoccus islandicus, contain the (putative) cbf5 intron. However, the exact timing of the intron insertion was not determined and verification of the putative secondary loss of the intron in some lineages was not performed.ResultsIn the present study, we determined approximately two-thirds of the entire coding region of crenarchaeal Cbf5 sequences from 43 species. A phylogenetic analysis of our data and information from the available genome sequences suggested that the (putative) cbf5 intron existed in the common ancestor of the orders Desulfurococcales and Sulfolobales and that probably at least two independent lineages in the order Desulfurococcales lost the (putative) intron.ConclusionThis finding is the first observation of a lineage-specific loss of a pre-mRNA intron in Archaea. As the insertion or deletion of introns in protein-coding genes in Archaea has not yet been seriously considered, our finding suggests the possible difficulty of accurately and completely predicting protein-coding genes in Archaea.

[1]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[2]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[3]  Y. Kawarabayasi,et al.  Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. , 2001, DNA research : an international journal for rapid publication of reports on genes and genomes.

[4]  Melvin I Simon,et al.  Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Hong Li,et al.  Structural characterization of the catalytic subunit of a novel RNA splicing endonuclease. , 2005, Journal of molecular biology.

[6]  M. Tomita,et al.  Comprehensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the order thermoproteales. , 2008, Molecular biology and evolution.

[7]  F. Dietrich,et al.  Evidence of mRNA-Mediated Intron Loss in the Human-Pathogenic Fungus Cryptococcus neoformans , 2006, Eukaryotic Cell.

[8]  C. Veltri,et al.  An RNA model system for investigation of pseudouridine stabilization of the codon-anticodon interaction in tRNALys, tRNAHis and tRNATyr. , 1998, Journal of biomolecular structure & dynamics.

[9]  N. Nomura,et al.  Distribution of 16S rRNA introns among the family Thermoproteaceae and their evolutionary implications , 2003, Extremophiles.

[10]  H. Kishino,et al.  Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea , 1989, Journal of Molecular Evolution.

[11]  G. Tocchini-Valentini,et al.  Structure, function, and evolution of the tRNA endonucleases of Archaea: an example of subfunctionalization. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  E. Koonin,et al.  A korarchaeal genome reveals insights into the evolution of the Archaea , 2008, Proceedings of the National Academy of Sciences.

[13]  R. Garrett,et al.  An intron in the 23S ribosomal RNA gene of the archaebacterium Desulfurococcus mobilis , 1985, Nature.

[14]  R. Garrett,et al.  Multiple variants of the archaeal DNA rudivirus SIRV1 in a single host and a novel mechanism of genomic variation , 2004, Molecular microbiology.

[15]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[16]  R. Garrett,et al.  Sulfolobus genomes: mechanisms of rearrangement and change , 2006 .

[17]  R. Garrett,et al.  The Genome of Sulfolobus acidocaldarius, a Model Organism of the Crenarchaeota , 2005, Journal of bacteriology.

[18]  G. Kurisu,et al.  Functional importance of Crenarchaea-specific extra-loop revealed by an X-ray structure of a heterotetrameric crenarchaeal splicing endonuclease , 2009, Nucleic acids research.

[19]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[20]  W. Doolittle,et al.  Transcription and excision of a large intron in the tRNATrp gene of an archaebacterium, Halobacterium volcanii. , 1985, The Journal of biological chemistry.

[21]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[22]  I. Stansfield,et al.  Physiological analysis of the role of truB in Escherichia coli: a role for tRNA modification in extreme temperature resistance. , 2002, Microbiology.

[23]  R. Masui,et al.  Functional reconstitution of a crenarchaeal splicing endonuclease in vitro. , 2005, Biochemical and biophysical research communications.

[24]  D. Söll,et al.  The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[26]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[27]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[28]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[29]  Henri Grosjean,et al.  Identification of BHB splicing motifs in intron-containing tRNAs from 18 archaea: evolutionary implications. , 2003, RNA.

[30]  S. Whelan,et al.  A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. , 2001, Molecular biology and evolution.

[31]  R A Garrett,et al.  Ribosomal RNA introns in archaea and evidence for RNA conformational changes associated with splicing. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[32]  N. Grishin,et al.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action , 2006, Biology Direct.

[33]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[34]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[35]  H. Ochman,et al.  Gene decay in archaea. , 2007, Archaea.

[36]  R. Terns,et al.  Formation of the conserved pseudouridine at position 55 in archaeal tRNA , 2006, Nucleic acids research.

[37]  C. Branlant,et al.  Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation , 2005, Nucleic acids research.

[38]  Luke E. Ulrich,et al.  Genome Sequence of Thermofilum pendens Reveals an Exceptional Loss of Biosynthetic Pathways without Genome Reduction , 2008, Journal of bacteriology.

[39]  Ioannis Xenarios,et al.  R-Coffee: a web server for accurately aligning noncoding RNA sequences , 2008, Nucleic Acids Res..

[40]  Mark A. Ragan,et al.  The complete genome of the crenarchaeon Sulfolobus solfataricus P2 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  N. Nomura,et al.  Heterogeneous yet similar introns reside in identical positions of the rRNA genes in natural isolates of the archaeon Aeropyrum pernix. , 2002, Gene.

[42]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[43]  Y. Kawarabayasi,et al.  Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.

[44]  Daniel L Baker,et al.  RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP. , 2005, Genes & development.

[45]  Hans-Peter Klenk,et al.  The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 °C , 2007 .

[46]  Akihiko Yamagishi,et al.  Introns in protein‐coding genes in Archaea , 2002, FEBS letters.

[47]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[48]  E. Delong,et al.  Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum , 2006, Proceedings of the National Academy of Sciences.

[49]  E. Delong,et al.  Archaeal pre-mRNA splicing: a connection to hetero-oligomeric splicing endonuclease. , 2006, Biochemical and biophysical research communications.

[50]  R. Garrett,et al.  The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 degrees C. , 2007, Archaea.

[51]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[52]  Y. Watanabe,et al.  Evolutionary appearance of genes encoding proteins associated with box H/ACA snoRNAs: cbf5p in Euglena gracilis, an early diverging eukaryote, and candidate Gar1p and Nop10p homologs in archaebacteria. , 2000, Nucleic acids research.

[53]  Luke E. Ulrich,et al.  The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota , 2009, BMC Genomics.

[54]  Natalia N. Ivanova,et al.  A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans , 2008, Genome Biology.

[55]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[56]  K. Strimmer,et al.  TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics , 2004, BMC Evolutionary Biology.

[57]  Masaru Tomita,et al.  SPLITS: A New Program for Predicting Split and Intron-Containing tRNA Genes at the Genome Level , 2006, Silico Biol..

[58]  G. Tocchini-Valentini,et al.  Coevolution of tRNA intron motifs and tRNA endonuclease architecture in Archaea , 2005, Proceedings of the National Academy of Sciences of the United States of America.