A hemolysin secretion pathway-based novel secretory expression platform for efficient manufacturing of tag peptides and anti-microbial peptides in Escherichia coli

[1]  R. Lund,et al.  Beyond structural models for the mode of action: How natural antimicrobial peptides affect lipid transport. , 2020, Journal of colloid and interface science.

[2]  J. Takagi,et al.  Site-specific epitope insertion into recombinant proteins using the MAP tag system , 2020, Journal of biochemistry.

[3]  Huiyan Wang,et al.  High-Level Expression and Purification of Melittin in Escherichia coli Using SUMO Fusion Partner , 2020, International Journal of Peptide Research and Therapeutics.

[4]  A. R. Azzoni,et al.  On the expression of recombinant Cas9 protein in E. coli BL21(DE3) and BL21(DE3) Rosetta strains. , 2019, Journal of biotechnology.

[5]  R. Ghirlando,et al.  Application of millisecond time-resolved solid state NMR to the kinetics and mechanism of melittin self-assembly , 2019, Proceedings of the National Academy of Sciences.

[6]  S. Smits,et al.  Functional Reconstitution of HlyB, a Type I Secretion ABC Transporter, in Saposin-A Nanoparticles , 2019, Scientific Reports.

[7]  L. A. Fernández,et al.  Screening and purification of nanobodies from E. coli culture supernatants using the hemolysin secretion system , 2019, Microbial Cell Factories.

[8]  L. Schmitt,et al.  Type I Secretion Systems—One Mechanism for All? , 2019, Microbiology spectrum.

[9]  M. Memariani,et al.  Melittin: from honeybees to superbugs , 2019, Applied Microbiology and Biotechnology.

[10]  Jufang Wang,et al.  Design, expression, and characterization of a novel cecropin A-derived peptide with high antibacterial activity , 2019, Applied Microbiology and Biotechnology.

[11]  Danielle Tullman-Ercek,et al.  Developing Gram-negative bacteria for the secretion of heterologous proteins , 2018, Microbial Cell Factories.

[12]  D. Fry Antimicrobial Peptides. , 2018, Surgical infections.

[13]  Jufang Wang,et al.  Rapid and efficient production of cecropin A antibacterial peptide in Escherichia coli by fusion with a self-aggregating protein , 2018, BMC Biotechnology.

[14]  Bong-Seong Koo,et al.  Efficient recovery of recombinant CRM197 expressed as inclusion bodies in E.coli , 2018, PloS one.

[15]  A. Agrawal,et al.  Effects of alterations of the E. coli lipopolysaccharide layer on membrane permeabilization events induced by Cecropin A. , 2018, Biochimica et biophysica acta. Biomembranes.

[16]  Baseer Ahmad,et al.  Expression, Purification, and Characterization of a Novel Hybrid Peptide with Potent Antibacterial Activity , 2018, Molecules.

[17]  L. Schmitt,et al.  Type I secretion system-it takes three and a substrate. , 2018, FEMS microbiology letters.

[18]  R. Freudl Signal peptides for recombinant protein secretion in bacterial expression systems , 2018, Microbial Cell Factories.

[19]  A. Sahebkar,et al.  Recombinant Protein Expression in Escherichia coli (E.coli): What We Need to Know. , 2018, Current pharmaceutical design.

[20]  J. Kaur,et al.  Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. , 2018, International journal of biological macromolecules.

[21]  A. Saraswati,et al.  Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance. , 2017, Current medicinal chemistry.

[22]  C. Schwarz,et al.  An A/U-Rich Enhancer Region Is Required for High-Level Protein Secretion through the HlyA Type I Secretion System , 2017, Applied and Environmental Microbiology.

[23]  Jufang Wang,et al.  A novel secretion and online-cleavage strategy for production of cecropin A in Escherichia coli , 2017, Scientific Reports.

[24]  Wei Song,et al.  Expression, purification and characterization of active untagged recombinant human leukemia inhibitory factor from E.coli. , 2017, Protein expression and purification.

[25]  Q. Zhuge,et al.  Selective cytotoxicity of the antibacterial peptide ABP‐dHC‐Cecropin A and its analog towards leukemia cells , 2017, European journal of pharmacology.

[26]  S. Gorr,et al.  Antimicrobial Peptides: Mechanisms of Action and Resistance , 2017, Journal of dental research.

[27]  K. Greber,et al.  Antimicrobial Peptides Under Clinical Trials. , 2016, Current topics in medicinal chemistry.

[28]  M. Mahlapuu,et al.  Antimicrobial Peptides: An Emerging Category of Therapeutic Agents , 2016, Front. Cell. Infect. Microbiol..

[29]  L. Otvos Immunomodulatory effects of anti-microbial peptides. , 2016, Acta microbiologica et immunologica Hungarica.

[30]  Kangseok Lee,et al.  Crystal Structure of a Soluble Fragment of the Membrane Fusion Protein HlyD in a Type I Secretion System of Gram-Negative Bacteria. , 2016, Structure.

[31]  S. Smits,et al.  Equilibrium folding of pro-HlyA from Escherichia coli reveals a stable calcium ion dependent folding intermediate. , 2014, Biochimica et biophysica acta.

[32]  L. Schmitt,et al.  The Type 1 secretion pathway - the hemolysin system and beyond. , 2014, Biochimica et biophysica acta.

[33]  J. Weisshaar,et al.  Localized permeabilization of E. coli membranes by the antimicrobial peptide Cecropin A. , 2013, Biochemistry.

[34]  C. Schwarz,et al.  Secretion of slow-folding proteins by a Type 1 secretion system , 2012, Bioengineered.

[35]  C. Schwarz,et al.  Using an E. coli Type 1 secretion system to secrete the mammalian, intracellular protein IFABP in its active form. , 2012, Journal of biotechnology.

[36]  C. D. Miller,et al.  Translocation of green fluorescent protein by comparative analysis with multiple signal peptides , 2012, Biotechnology journal.

[37]  Wei Zhao,et al.  Generating DNA sequences encoding tandem peptide repeats suitable for expression and immunological application , 2012, World journal of microbiology & biotechnology.

[38]  S. Smits,et al.  The Rate of Folding Dictates Substrate Secretion by the Escherichia coli Hemolysin Type 1 Secretion System* , 2010, The Journal of Biological Chemistry.

[39]  A. Driessen,et al.  Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. , 2008, Biochimica et biophysica acta.

[40]  R. Hancock,et al.  Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances , 2008, Nature Protocols.

[41]  Wenqing Zhang,et al.  Expression and purification of a recombinant antibacterial peptide, cecropin, from Escherichia coli. , 2007, Protein expression and purification.

[42]  S. Kanaya,et al.  Extracellular secretion of Escherichia coli alkaline phosphatase with a C-terminal tag by type I secretion system: purification and biochemical characterization. , 2006, Protein engineering, design & selection : PEDS.

[43]  V. de Lorenzo,et al.  Secretion of proteins with dimerization capacity by the haemolysin type I transport system of Escherichia coli , 2004, Molecular microbiology.

[44]  V. de Lorenzo,et al.  Specific Secretion of Active Single-Chain Fv Antibodies into the Supernatants of Escherichia coliCultures by Use of the Hemolysin System , 2000, Applied and Environmental Microbiology.

[45]  Gregory J. Phillips,et al.  Green Fluorescent Protein Functions as a Reporter for Protein Localization in Escherichia coli , 2000, Journal of bacteriology.

[46]  P. Cegłowski,et al.  Secretion of streptokinase fusion proteins from Escherichia coli cells through the hemolysin transporter. , 1995, Gene.

[47]  C. Arrowsmith,et al.  Structural analysis and comparison of the C‐terminal transport signal domains of hemolysin A and leukotoxin A , 1995, FEBS letters.

[48]  N. Mackman,et al.  The C‐terminal, 23 kDa peptide of E. coli haemolysin 2001 contains all the information necessary for its secretion by the haemolysin (Hly) export machinery , 1986, FEBS letters.