Lytic KSHV infection inhibits host gene expression by accelerating global mRNA turnover.

[1]  D. Ganem,et al.  Host Range of Kaposi's Sarcoma-Associated Herpesvirus in Cultured Cells , 2003, Journal of Virology.

[2]  Frederick Y. Wu,et al.  A novel viral mechanism for dysregulation of β-catenin in Kaposi's sarcoma–associated herpesvirus latency , 2003, Nature Medicine.

[3]  P. Pellett,et al.  Risk factors for Kaposi's sarcoma in men seropositive for both human herpesvirus 8 and human immunodeficiency virus , 2003, AIDS.

[4]  P. Moore,et al.  Viral IL-6-Induced Cell Proliferation and Immune Evasion of Interferon Activity , 2002, Science.

[5]  I. Mian,et al.  mRNA Degradation by the Virion Host Shutoff (Vhs) Protein of Herpes Simplex Virus: Genetic and Biochemical Evidence that Vhs Is a Nuclease , 2002, Journal of Virology.

[6]  M. McMahon,et al.  De Novo Infection and Serial Transmission of Kaposi's Sarcoma-Associated Herpesvirus in Cultured Endothelial Cells , 2002, Journal of Virology.

[7]  R. Leurs,et al.  Kaposi's Sarcoma-Associated Herpesvirus-Encoded G Protein-Coupled Receptor ORF74 Constitutively Activates p44/p42 MAPK and Akt via Gi and Phospholipase C-Dependent Signaling Pathways , 2002, Journal of Virology.

[8]  T. Tlsty,et al.  Induction of tubulogenesis in telomerase-immortalized human microvascular endothelial cells by glioblastoma cells. , 2002, Experimental cell research.

[9]  P. Monini,et al.  Biology of Kaposi's sarcoma. , 2001, European journal of cancer.

[10]  A. Burlingame,et al.  Kaposi's Sarcoma-Associated Herpesvirus K-bZIP Protein Is Phosphorylated by Cyclin-Dependent Kinases , 2001, Journal of Virology.

[11]  C. Boshoff,et al.  The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma–E2F pathway and with the oncogene Hras transforms primary rat cells , 2000, Nature Medicine.

[12]  J. Gutkind,et al.  The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. , 2000, Cancer research.

[13]  D. Ganem,et al.  Kaposi's Sarcoma-Associated Herpesvirus Open Reading Frame 57 Encodes a Posttranscriptional Regulator with Multiple Distinct Activities , 2000, Journal of Virology.

[14]  E. Cesarman,et al.  Viral G Protein–Coupled Receptor and Kaposi's Sarcoma , 2000, The Journal of experimental medicine.

[15]  G. Nabel,et al.  p53 inhibition by the LANA protein of KSHV protects against cell death , 1999, Nature.

[16]  J. McCune,et al.  Experimental Transmission of Kaposi's Sarcoma–Associated Herpesvirus (Kshv/Hhv-8) to Scid-Hu Thy/Liv Mice , 1999, The Journal of experimental medicine.

[17]  D. Ganem,et al.  Transcriptional Activation by the Product of Open Reading Frame 50 of Kaposi’s Sarcoma-Associated Herpesvirus Is Required for Lytic Viral Reactivation in B Cells , 1999, Journal of Virology.

[18]  A. Haase,et al.  Expression of the Open Reading Frame 74 (G-Protein-Coupled Receptor) Gene of Kaposi’s Sarcoma (KS)-Associated Herpesvirus: Implications for KS Pathogenesis , 1999, Journal of Virology.

[19]  E. Jaffe,et al.  Angiogenesis and hematopoiesis induced by Kaposi's sarcoma-associated herpesvirus-encoded interleukin-6. , 1999, Blood.

[20]  R. Majeti,et al.  Deregulated signal transduction by the K1 gene product of Kaposi's sarcoma-associated herpesvirus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Ballestas,et al.  Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. , 1999, Science.

[22]  E. van Marck,et al.  Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Palestine,et al.  Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. , 1999, The New England journal of medicine.

[24]  P. Allavena,et al.  The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant. , 1998, Blood.

[25]  T. Gingeras,et al.  Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  S. Weller,et al.  In Vitro Processing of Herpes Simplex Virus Type 1 DNA Replication Intermediates by the Viral Alkaline Nuclease, UL12 , 1998, Journal of Virology.

[27]  B. Nathwani,et al.  Evidence for multiclonality in multicentric Kaposi's sarcoma. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Weller,et al.  The exonuclease activity of HSV-1 UL12 is required for in vivo function. , 1998, Virology.

[29]  P. Moore,et al.  Antiviral activity of tumor-suppressor pathways: clues from molecular piracy by KSHV. , 1998, Trends in genetics : TIG.

[30]  R. Warnke,et al.  Establishing a KSHV+ cell line (BCP-1) from peripheral blood and characterizing its growth in Nod/SCID mice. , 1998, Blood.

[31]  E. Cesarman,et al.  G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator , 1998, Nature.

[32]  D. Tenney,et al.  The human cytomegalovirus UL98 gene encodes the conserved herpesvirus alkaline nuclease. , 1997, The Journal of general virology.

[33]  D. Ganem KSHV and Kaposi's Sarcoma: The End of the Beginning? , 1997, Cell.

[34]  T. Schwartz,et al.  A broad-spectrum chemokine antagonist encoded by Kaposi's sarcoma-associated herpesvirus. , 1997, Science.

[35]  F. Neipel,et al.  Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? , 1997, Journal of virology.

[36]  E. Cesarman,et al.  Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation , 1997, Nature.

[37]  A. Haase,et al.  Kaposi's sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells , 1997, Journal of virology.

[38]  C. Boshoff,et al.  Molecular Mimicry of Human Cytokine and Cytokine Response Pathway Genes by KSHV , 1996, Science.

[39]  C. Smibert,et al.  Herpes simplex virus VP16 rescues viral mRNA from destruction by the virion host shutoff function. , 1996, The EMBO journal.

[40]  S. Weller,et al.  Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates , 1996, Journal of virology.

[41]  S. Weller,et al.  The product of a 1.9-kb mRNA which overlaps the HSV-1 alkaline nuclease gene (UL12) cannot relieve the growth defects of a null mutant. , 1996, Virology.

[42]  C. Smibert,et al.  Mutational analysis of the herpes simplex virus virion host shutoff protein: evidence that vhs functions in the absence of other viral proteins , 1995, Journal of virology.

[43]  E. Cesarman,et al.  Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. , 1994, Science.

[44]  R. Sandri-Goldin,et al.  Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect , 1994, Journal of virology.

[45]  M. A. Hardwicke,et al.  The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection , 1994, Journal of virology.

[46]  G. S. Read,et al.  In vitro mRNA degradation system to study the virion host shutoff function of herpes simplex virus , 1991, Journal of virology.

[47]  K. Weißhart,et al.  Comparison of exonucleolytic activities of herpes simplex virus type-1 DNA polymerase and DNase. , 1990, European journal of biochemistry.

[48]  M. Stolzenberg,et al.  Purification and properties of Epstein-Barr virus DNase expressed in Escherichia coli , 1990, Journal of virology.

[49]  A. Oroskar,et al.  Control of mRNA stability by the virion host shutoff function of herpes simplex virus , 1989, Journal of virology.

[50]  P. Hofschneider,et al.  Cultured, aids‐related Kaposi's sarcoma cells express endothelial cell markers and are weakly malignant in vitro , 1988, International journal of cancer.

[51]  N. Frenkel,et al.  Effects of herpes simplex virus on mRNA stability , 1987, Journal of virology.

[52]  A. Kwong,et al.  Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[53]  S. Bachenheimer,et al.  Degradation of cellular mRNAs induced by a virion-associated factor during herpes simplex virus infection of Vero cells , 1985, Journal of virology.

[54]  R. Eisenberg,et al.  High-resolution characterization of herpes simplex virus type 1 transcripts encoding alkaline exonuclease and a 50,000-dalton protein tentatively identified as a capsid protein , 1983 .

[55]  C. Boshoff,et al.  KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. , 2000, Blood.

[56]  P. Biberfeld,et al.  Spindle cell ploidy and proliferation in endemic and epidemic African Kaposi's sarcoma. , 1992, European journal of cancer.