Solving KKT Systems via the Trust Region and the ConjugateGradient Methods 1

In this paper, we propose a trust region method for solving KKT systems arising from the variational inequality problem and the constrained optimization problem. The trust region subproblem is derived from reformulation of the KKT system as a constrained optimization problem and is solved by the truncated conjugate gradient method; meanwhile the variables remain feasible with respect to the constrained optimization problem. Global and superlinear convergence are established. Some preliminary numerical experiments show that the method is quite promising.

[1]  P. Tseng,et al.  Modified Projection-Type Methods for Monotone Variational Inequalities , 1996 .

[2]  M. Powell A New Algorithm for Unconstrained Optimization , 1970 .

[3]  Jong-Shi Pang,et al.  NE/SQP: A robust algorithm for the nonlinear complementarity problem , 1993, Math. Program..

[4]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[5]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[6]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[7]  Houyuan Jiang,et al.  Semismooth Karush-Kuhn-Tucker Equations and Convergence Analysis of Newton and Quasi-Newton Methods for Solving these Equations , 1997, Math. Oper. Res..

[8]  Christian Kanzow,et al.  A QP-free constrained Newton-type method for variational inequality problems , 1999, Math. Program..

[9]  Francisco Facchinei,et al.  On the Accurate Identification of Active Constraints , 1998, SIAM J. Optim..

[10]  Jong-Shi Pang,et al.  An inexact NE/SQP method for solving the nonlinear complementarity problem , 1992, Comput. Optim. Appl..

[11]  Andreas Fischer,et al.  Solution of monotone complementarity problems with locally Lipschitzian functions , 1997, Math. Program..

[12]  Michael Ulbrich,et al.  Nonmonotone Trust-Region Methods for Bound-Constrained Semismooth Equations with Applications to Nonlinear Mixed Complementarity Problems , 2000, SIAM J. Optim..

[13]  Jiming Peng Global Method for Monotone Variational Inequality Problems with Inequality Constraints , 1997 .

[14]  Francisco Facchinei,et al.  Regularity Properties of a Semismooth Reformulation of Variational Inequalities , 1998, SIAM J. Optim..

[15]  F. Facchinei,et al.  A Simply Constrained Optimization Reformulation of KKT Systems Arising from Variational Inequalities , 1999 .

[16]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[17]  Jong-Shi Pang,et al.  Nonsmooth Equations: Motivation and Algorithms , 1993, SIAM J. Optim..

[18]  Ya-Xiang Yuan,et al.  A Robust Algorithm for Optimization with General Equality and Inequality Constraints , 2000, SIAM J. Sci. Comput..

[19]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[20]  Ya-Xiang Yuan,et al.  On the truncated conjugate gradient method , 2000, Math. Program..

[21]  Masao Fukushima,et al.  A Trust Region Method for Solving Generalized Complementarity Problems , 1998, SIAM J. Optim..

[22]  Philippe L. Toint,et al.  Towards an efficient sparsity exploiting newton method for minimization , 1981 .

[23]  A. Fischer A special newton-type optimization method , 1992 .

[24]  Christian Kanzow,et al.  Strictly feasible equation-based methods for mixed complementarity problems , 2001, Numerische Mathematik.

[25]  Thomas F. Coleman,et al.  Computing a Trust Region Step for a Penalty Function , 1990, SIAM J. Sci. Comput..

[26]  M. Sahba Globally convergent algorithm for nonlinearly constrained optimization problems , 1987 .

[27]  R. Fletcher Practical Methods of Optimization , 1988 .

[28]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[29]  Jiming Liu Strong Stability in Variational Inequalities , 1995 .