Phylogenomics resolves the timing and pattern of insect evolution

Toward an insect evolution resolution Insects are the most diverse group of animals, with the largest number of species. However, many of the evolutionary relationships between insect species have been controversial and difficult to resolve. Misof et al. performed a phylogenomic analysis of protein-coding genes from all major insect orders and close relatives, resolving the placement of taxa. The authors used this resolved phylogenetic tree together with fossil analysis to date the origin of insects to ~479 million years ago and to resolve long-controversial subjects in insect phylogeny. Science, this issue p. 763 The phylogeny of all major insect lineages reveals how and when insects diversified. Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.

[1]  Jun Wang,et al.  Molecular traces of alternative social organization in a termite genome , 2014, Nature Communications.

[2]  R. Beutel,et al.  Evolution of attachment structures in the highly diverse Acercaria (Hexapoda) , 2014, Cladistics : the international journal of the Willi Hennig Society.

[3]  C. Labandeira,et al.  Middle Devonian liverwort herbivory and antiherbivore defence. , 2014, The New phytologist.

[4]  O. Béthoux,et al.  Under Cover at Pre-Angiosperm Times: A Cloaked Phasmatodean Insect from the Early Cretaceous Jehol Biota , 2014, PloS one.

[5]  R. Beutel,et al.  Embryonic development of Zoraptera with special reference to external morphology, and its phylogenetic implications (Insecta) , 2014, Journal of morphology.

[6]  Alexandros Stamatakis,et al.  Decisive Data Sets in Phylogenomics: Lessons from Studies on the Phylogenetic Relationships of Primarily Wingless Insects , 2013, Molecular biology and evolution.

[7]  Xun Xu,et al.  SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads , 2013, Bioinform..

[8]  Alexandros Stamatakis,et al.  The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data , 2014, BMC Evolutionary Biology.

[9]  B. Misof,et al.  Head morphology of Tricholepidion gertschi indicates monophyletic Zygentoma , 2014, Frontiers in Zoology.

[10]  Bernhard Misof,et al.  Selecting informative subsets of sparse supermatrices increases the chance to find correct trees , 2013, BMC Bioinformatics.

[11]  N. Wahlberg,et al.  Timing and Patterns in the Taxonomic Diversification of Lepidoptera (Butterflies and Moths) , 2013, PloS one.

[12]  T. Bourgoin,et al.  The earliest known holometabolous insects , 2013, Nature.

[13]  H. Letsch,et al.  Insect phylogenomics: new insights on the relationships of lower neopteran orders (Polyneoptera) , 2013 .

[14]  M. Benton,et al.  Diversity Dynamics of Silurian–Early Carboniferous Land Plants in South China , 2013, PloS one.

[15]  D. Grimaldi,et al.  The Relict Scorpionfly Family Meropeidae (Mecoptera) in Cretaceous Amber , 2013 .

[16]  G. Ortí,et al.  Addressing gene tree discordance and non-stationarity to resolve a multi-locus phylogeny of the flatfishes (Teleostei: Pleuronectiformes). , 2013, Systematic biology.

[17]  R. Beutel,et al.  On the phylogeny and evolution of Mesozoic and extant lineages of Adephaga (Coleoptera, Insecta) , 2013, Cladistics : the international journal of the Willi Hennig Society.

[18]  G. Poinar,et al.  Burmaphlebia reifi gen. et sp. nov., the first anisozygopteran damsel-dragonfly (Odonata: Epiophlebioptera: Burmaphlebiidae fam. nov.) from Early Cretaceous Burmese amber , 2013 .

[19]  D. Pisani,et al.  Molecular Timetrees Reveal a Cambrian Colonization of Land and a New Scenario for Ecdysozoan Evolution , 2013, Current Biology.

[20]  B. Holland,et al.  The identification of concerted convergence in insect heads corroborates palaeoptera. , 2013, Systematic biology.

[21]  M. Sutton,et al.  A Silurian myodocope with preserved soft-parts: cautioning the interpretation of the shell-based ostracod record , 2013, Proceedings of the Royal Society B: Biological Sciences.

[22]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[23]  Alexandros Stamatakis,et al.  Pruning Rogue Taxa Improves Phylogenetic Accuracy: An Efficient Algorithm and Webservice , 2012, Systematic biology.

[24]  N. P. Kristensen Phylogeny of endopterygote insects, the most successful lineage of living organisms , 2013 .

[25]  R. Beutel,et al.  Revival of Palaeoptera—head characters support a monophyletic origin of Odonata and Ephemeroptera (Insecta) , 2012, Cladistics : the international journal of the Willi Hennig Society.

[26]  D. Grimaldi,et al.  Leehermania prorova, the Earliest Staphyliniform Beetle, from the Late Triassic of Virginia (Coleoptera: Staphylinidae) , 2012 .

[27]  D. Grimaldi,et al.  Age constraint on Burmese amber based on U–Pb dating of zircons , 2012 .

[28]  D. Grimaldi,et al.  Phylogeny of ensign scale insects (Hemiptera: Coccoidea: Ortheziidae) based on the morphology of Recent and fossil females , 2012 .

[29]  H. Kerp,et al.  Lycopsid–arthropod associations and odonatopteran oviposition on Triassic herbaceous Isoetites , 2012 .

[30]  Seraina Klopfstein,et al.  A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera , 2012, Systematic biology.

[31]  P. Stadler,et al.  Genomic and Morphological Evidence Converge to Resolve the Enigma of Strepsiptera , 2012, Current Biology.

[32]  D. Ren,et al.  Early Evolution and Historical Biogeography of Fishflies (Megaloptera: Chauliodinae): Implications from a Phylogeny Combining Fossil and Extant Taxa , 2012, PloS one.

[33]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[34]  Alexandros Stamatakis,et al.  RAxML-Light: a tool for computing terabyte phylogenies , 2012, Bioinform..

[35]  J. Doyle Molecular and Fossil Evidence on the Origin of Angiosperms , 2012 .

[36]  Shuo Wang,et al.  Mid-Mesozoic Flea-like Ectoparasites of Feathered or Haired Vertebrates , 2012, Current Biology.

[37]  I. Ebersberger,et al.  Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. , 2012, Molecular biology and evolution.

[38]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[39]  Robert D. Finn,et al.  InterPro in 2011: new developments in the family and domain prediction database , 2011, Nucleic acids research.

[40]  Christopher,et al.  Best Practices for Justifying Fossil Calibrations , 2011, Systematic biology.

[41]  A. AbeLleM.VE Phylogeny of ensign scale insects (Hemiptera: Coccoidea: Ortheziidae) based on the morphology of Recent and fossil females , 2012 .

[42]  David K Yeates,et al.  Advances in insect phylogeny at the dawn of the postgenomic era. , 2012, Annual review of entomology.

[43]  V. Smith,et al.  Multiple lineages of lice pass through the K–Pg boundary , 2011, Biology Letters.

[44]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[45]  Cynthia Parr,et al.  Can Deliberately Incomplete Gene Sample Augmentation Improve a Phylogeny Estimate for the Advanced Moths and Butterflies (Hexapoda: Lepidoptera)? , 2011, Systematic biology.

[46]  R. Meier,et al.  Morphological and molecular evidence converge upon a robust phylogeny of the megadiverse Holometabola , 2011, Cladistics : the international journal of the Willi Hennig Society.

[47]  Anders Krogh,et al.  farming suggests key adaptations to advanced social life and fungus Acromyrmex echinatior The genome of the leaf-cutting ant Material Supplemental , 2011 .

[48]  Li Yushuang,et al.  Pronemouridae fam. nov. (Insecta: Plecoptera), the stem group of nemouridae and notonemouridae, from the Middle Jurassic of Inner Mongolia, China , 2011 .

[49]  K. Yoshizawa Monophyletic Polyneoptera recovered by wing base structure , 2011 .

[50]  Q. Crowley,et al.  A high-precision U–Pb age constraint on the Rhynie Chert Konservat-Lagerstätte: time scale and other implications , 2011, Journal of the Geological Society.

[51]  Derek J. Taylor,et al.  Mesozoic fossils (>145 Mya) suggest the antiquity of the subgenera of Daphnia and their coevolution with chaoborid predators , 2011, BMC Evolutionary Biology.

[52]  M. Engel,et al.  Miocene honey bees from the Randeck Maar of southwestern Germany (Hymenoptera, Apidae) , 2011, ZooKeys.

[53]  R. Beutel,et al.  On the head morphology of Grylloblattodea (Insecta) and the systematic position of the order, with a new nomenclature for the head muscles of Dicondylia , 2011 .

[54]  Todd H. Oakley,et al.  The Ecoresponsive Genome of Daphnia pulex , 2011, Science.

[55]  T. Miyata,et al.  Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. , 2011, Molecular phylogenetics and evolution.

[56]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[57]  Evgeny M. Zdobnov,et al.  OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011 , 2010, Nucleic Acids Res..

[58]  F. Frati,et al.  Sperm accessory microtubules suggest the placement of Diplura as the sister-group of Insecta s.s. , 2011, Arthropod structure & development.

[59]  D. Ren,et al.  Transitional fossil earwigs - a missing link in Dermaptera evolution , 2010, BMC Evolutionary Biology.

[60]  A. von Haeseler,et al.  A phylogenomic approach to resolve the arthropod tree of life. , 2010, Molecular biology and evolution.

[61]  Julie M. Allen,et al.  Evolutionary history of mammalian sucking lice (Phthiraptera: Anoplura) , 2010, BMC Evolutionary Biology.

[62]  N. Hardy,et al.  On wings of lace: phylogeny and Bayesian divergence time estimates of Neuropterida (Insecta) based on morphological and molecular data , 2010 .

[63]  Evgeny M. Zdobnov,et al.  Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle , 2010, Proceedings of the National Academy of Sciences.

[64]  J. Shultz,et al.  Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences , 2010, Nature.

[65]  G. K. Davis,et al.  Genome Sequence of the Pea Aphid Acyrthosiphon pisum , 2010, PLoS biology.

[66]  Erich Bornberg-Bauer,et al.  Functional and Evolutionary Insights from the Genomes of Three Parasitoid Nasonia Species , 2010, Science.

[67]  E. Peñalver,et al.  Modern thrips families Thripidae and Phlaeothripidae in Early Cretaceous amber (Insecta: Thysanoptera) , 2010 .

[68]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[69]  Patrick Kück,et al.  Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees , 2010, Frontiers in Zoology.

[70]  Ben C. Stöver,et al.  TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses , 2010, BMC Bioinformatics.

[71]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[72]  P. Zwick The Plecoptera – who are they? The problematic placement of stoneflies in the phylogenetic system of insects , 2009 .

[73]  Kumar Krishna,et al.  Additional Distributional Records of Ambystoma Laterale, A. Jeffersonianum (Amphibia: Caudata) and Their Unisexual Kleptogens in Northeastern North America , 2008 .

[74]  David K Yeates,et al.  Single-copy nuclear genes resolve the phylogeny of the holometabolous insects , 2009, BMC Biology.

[75]  A. Kawahara Phylogeny of snout butterflies (Lepidoptera: Nymphalidae: Libytheinae): combining evidence from the morphology of extant, fossil, and recently extinct taxa , 2009 .

[76]  Alexandros Stamatakis,et al.  How Many Bootstrap Replicates Are Necessary? , 2009, RECOMB.

[77]  R. Tillyard SOME REMARKS ON THE DEVONIAN FOSSIL INSECTS FROM THE RHYNIE CHERT BEDS, OLD RED SANDSTONE , 2009 .

[78]  Katharina Misof,et al.  A Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. , 2009, Systematic biology.

[79]  Ingo Ebersberger,et al.  HaMStR: Profile hidden markov model based search for orthologs in ESTs , 2009, BMC Evolutionary Biology.

[80]  J. G. Burleigh,et al.  Inferring phylogenies with incomplete data sets: a 5-gene, 567-taxon analysis of angiosperms , 2009, BMC Evolutionary Biology.

[81]  P. Renne,et al.  High-precision 40Ar/39Ar age for the Jehol Biota , 2008 .

[82]  Max Kuhn,et al.  Building Predictive Models in R Using the caret Package , 2008 .

[83]  Peter Kampstra,et al.  Beanplot: A Boxplot Alternative for Visual Comparison of Distributions , 2008 .

[84]  R. Beutel,et al.  The evolution of Strepsiptera (Hexapoda). , 2008, Zoology.

[85]  C. Moreau Unraveling the evolutionary history of the hyperdiverse ant genus Pheidole (Hymenoptera: Formicidae). , 2008, Molecular phylogenetics and evolution.

[86]  O. Gascuel,et al.  An improved general amino acid replacement matrix. , 2008, Molecular biology and evolution.

[87]  Thomas Hörnschemeyer,et al.  On the head morphology of Tetraphalerus, the phylogeny of Archostemata and the basal branching events in Coleoptera , 2008 .

[88]  Peer Bork,et al.  The Genome of the Model Beetle and Pest Tribolium Castaneum Vertebrate-specific Orthologues Insect-specific Orthologues Homology Undetectable Similarity , 2022 .

[89]  Junhyong Kim,et al.  Taxon sampling affects inferences of macroevolutionary processes from phylogenetic trees. , 2008, Systematic biology.

[90]  K. Kjer,et al.  Ancient rapid radiations of insects: challenges for phylogenetic analysis. , 2008, Annual review of entomology.

[91]  Kazutaka Katoh,et al.  Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework , 2008, BMC Bioinformatics.

[92]  G. Scholtz,et al.  Filling the gap between identified neuroblasts and neurons in crustaceans adds new support for Tetraconata , 2008, Proceedings of the Royal Society B: Biological Sciences.

[93]  R. Beattie The geological setting and palaeoenvironmental and palaeoecological reconstructions of the Upper Permian insect beds at Belmont, New South Wales, Australia , 2007 .

[94]  P. Renne,et al.  A numerically calibrated reference level (MP28) for the terrestrial mammal-based biozonation of the European Upper Oligocene , 2007 .

[95]  John Robinson,et al.  Estimation of Phylogeny Using a General Markov Model , 2005, Evolutionary bioinformatics online.

[96]  K. Kjer,et al.  Site specific rates of mitochondrial genomes and the phylogeny of eutheria , 2007, BMC Evolutionary Biology.

[97]  Yongqing Liu,et al.  U-Pb zircon age for the Daohugou Biota at Ningcheng of Inner Mongolia and comments on related issues , 2006 .

[98]  Ying Wang,et al.  Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[99]  A. Yoder,et al.  A New Species of Emballonura (Chiroptera: Emballonuridae) from the Dry Regions of Madagascar , 2006 .

[100]  Seán G. Brady,et al.  The history of early bee diversification based on five genes plus morphology , 2006, Proceedings of the National Academy of Sciences.

[101]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[102]  M. Engel,et al.  A New Species of Zorotypus from Central Amazonia, Brazil (Zoraptera: Zorotypidae) , 2006 .

[103]  Thomas Lengauer,et al.  Improved scoring of functional groups from gene expression data by decorrelating GO graph structure , 2006, Bioinform..

[104]  H. Godfray,et al.  Fossil‐calibrated molecular phylogenies reveal that leaf‐mining moths radiated millions of years after their host plants , 2006, Journal of evolutionary biology.

[105]  Peer Bork,et al.  PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments , 2006, Nucleic Acids Res..

[106]  Faisal Ababneh,et al.  Matched-pairs tests of homogeneity with applications to homologous nucleotide sequences , 2006, Bioinform..

[107]  D. Grimaldi,et al.  The Earliest Webspinners (Insecta: Embiodea) , 2006 .

[108]  Faisal Ababneh,et al.  Generation of the Exact Distribution and Simulation of Matched Nucleotide Sequences on a Phylogenetic Tree , 2006, J. Math. Model. Algorithms.

[109]  S. Harzsch Neurophylogeny: Architecture of the nervous system and a fresh view on arthropod phyologeny. , 2006, Integrative and comparative biology.

[110]  Robert D. Finn,et al.  Pfam: clans, web tools and services , 2005, Nucleic Acids Res..

[111]  C. Labandeira Silurian to Triassic plant and insect clades and their associations: new data, a review, and interpretations , 2006 .

[112]  D. Grimaldi,et al.  Fossil Liposcelididae and the lice ages (Insecta: Psocodea) , 2006, Proceedings of the Royal Society B: Biological Sciences.

[113]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[114]  A. Nel,et al.  Discovery of the oldest known Pterygota in the Lower Carboniferous of the Upper Silesian Basin in the Czech Republic (Insecta: Archaeorthoptera) , 2005 .

[115]  C. Labandeira Invasion of the continents: cyanobacterial crusts to tree-inhabiting arthropods. , 2005, Trends in ecology & evolution.

[116]  Ewan Birney,et al.  Automated generation of heuristics for biological sequence comparison , 2005, BMC Bioinformatics.

[117]  Dawei Li,et al.  A Draft Sequence for the Genome of the Domesticated Silkworm ( Bombyx mori ) , 2004 .

[118]  V. Smith,et al.  Multiple origins of parasitism in lice , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[119]  D. Grimaldi,et al.  The Earliest Fossil Mosquito (Diptera: Culicidae), in Mid-Cretaceous Burmese Amber , 2004 .

[120]  D. Grimaldi,et al.  MESOZOIC THRIPS AND EARLY EVOLUTION OF THE ORDER THYSANOPTERA (INSECTA) , 2004 .

[121]  V. Smith,et al.  Scratching an ancient itch: an Eocene bird louse fossil , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[122]  Faisal Ababneh,et al.  The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated. , 2004, Systematic biology.

[123]  S. Ho,et al.  Tracing the decay of the historical signal in biological sequence data. , 2004, Systematic biology.

[124]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[125]  D. Grimaldi,et al.  New light shed on the oldest insect , 2004, Nature.

[126]  Jian Wang,et al.  The Genome Sequence of the Malaria Mosquito Anopheles gambiae , 2002, Science.

[127]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[128]  C. Swisher,et al.  Further support for a Cretaceous age for the feathered-dinosaur beds of Liaoning,China:New 40Ar÷39Ar dating of the Yixian and Tuchengzi Formations , 2002, Science Bulletin.

[129]  D. Martill,et al.  A New Japygid Dipluran from the Lower Cretaceous of Brazil , 2001 .

[130]  S. Whelan,et al.  A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. , 2001, Molecular biology and evolution.

[131]  M. Koch Mandibular mechanisms and the evolution of hexapods , 2001 .

[132]  D. Grimaldi,et al.  A fossil water measurer from the mid-Cretaceous Burmese amber (Hemiptera: Gerromorpha: Hydrometridae) , 2001 .

[133]  D. Grimaldi,et al.  A formicine in New Jersey cretaceous amber (Hymenoptera: formicidae) and early evolution of the ants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[134]  C. Swisher,et al.  Numerical dating of the Eckfeld maar fossil site, Eifel, Germany: a calibration mark for the Eocene time scale , 2000, Naturwissenschaften.

[135]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[136]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[137]  D. Siveter,et al.  Three‐dimensional preservation of a non‐biomineralized arthropod in concretions in Silurian volcaniclastic rocks from Herefordshire, England , 2000, Journal of the Geological Society.

[138]  A. Staniczek The mandible of silverfish (Insecta: Zygentoma) and mayflies (Ephemeroptera): its morphology and phylogenetic significance. , 2000 .

[139]  Martin Vingron,et al.  Modeling Amino Acid Replacement , 2000, J. Comput. Biol..

[140]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[141]  K. Strimmer,et al.  Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[142]  P. Štys,et al.  The basic body plan of arthropods: insights from evolutionary morphology and developmental biology , 1997 .

[143]  R. Don ON THE NEW FOSSIL GENERA AND SPECIES OF NEUROPTERA(INSECTA)FROM THE LATE JURASSIC OF NORTHEAST CHINA , 1996 .

[144]  R. Schlische,et al.  High-resolution stratigraphy of the Newark rift basin (early Mesozoic, eastern North America) , 1996 .

[145]  D. Wagner,et al.  Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[146]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[147]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[148]  B. A. A. Ende Depositional environments, palynology, and age of the Dakota Formation, south-central Utah , 1991 .

[149]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[150]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[151]  A. Hurford,et al.  Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating , 1984, Geological Magazine.

[152]  N. P. Kristensen Phylogeny of Insect Orders , 1981 .

[153]  P. Whalley New taxa of fossil and recent Micropterigidae with a discussion of their evolution and a comment on the evolution of Lepidoptera (Insecta) , 1978 .

[154]  A. Stuart A TEST FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION , 1955 .

[155]  A. Bowker,et al.  A test for symmetry in contingency tables. , 1948, Journal of the American Statistical Association.

[156]  D. Scourfield THE OLDEST KNOWN FOSSIL INSECT (RHYNIELLA PRAECURSOR Hirst & Maulik)–FURTHER DETAILS FROM ADDITIONAL SPECIMENS. , 1940 .

[157]  S. W. Bromley The External Anatomy of the Black Horse-fly Tabanus atratus, Fab. (Diptera: Tabanidae). , 1926 .

[158]  S. Hirst,et al.  On some Arthropod Remains from the Rhynie Chert (Old Red Sandstone) , 1926, Geological Magazine.