Optimal uncertainty relations for extremely coarse-grained measurements

We derive two quantum uncertainty relations for position and momentum coarse-grained measurements. Building on previous results, we first improve the lower bound for uncertainty relations using the Renyi entropy, particularly in the case of coarse-grained measurements. We then sharpen a Heisenberg-like uncertainty relation derived previously in [Europhys. Lett. 97, 38003, (2012)] that uses variances and reduces to the usual one in the case of infinite precision measurements. Our sharpened uncertainty relation is meaningful for any amount of coarse graining. That is, there is always a non-trivial uncertainty relation for coarse-grained measurement of the non-commuting observables, even in the limit of extremely large coarse graining.

[1]  M. Ozawa Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement , 2002, quant-ph/0207121.

[2]  S. Zozor,et al.  On classes of non-Gaussian asymptotic minimizers in entropic uncertainty principles , 2007 .

[3]  J. S. Dehesa,et al.  Position-momentum uncertainty relations based on moments of arbitrary order , 2011, 1112.6356.

[4]  M. Ozawa,et al.  Experimental demonstration of a universally valid error–disturbance uncertainty relation in spin measurements , 2012, Nature Physics.

[5]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[6]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[7]  M. Partovi Entropic formulation of uncertainty for quantum measurements , 1983 .

[8]  S. Walborn,et al.  Family of continuous-variable entanglement criteria using general entropy functions , 2010, 1005.1045.

[9]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[10]  Kraus Complementary observables and uncertainty relations. , 1987, Physical review. D, Particles and fields.

[11]  W. P. Bowen,et al.  Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications , 2008, 0806.0270.

[12]  Lukasz Rudnicki,et al.  Entropic Uncertainty Relations in Quantum Physics , 2010, 1001.4668.

[13]  Takahiro Sagawa,et al.  Uncertainty relation revisited from quantum estimation theory , 2010, 1010.3571.

[14]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[15]  E. V. Nuttall ACT , 1986 .

[16]  Caslav Brukner,et al.  Classical world arising out of quantum physics under the restriction of coarse-grained measurements. , 2007, Physical review letters.

[17]  M. S. Zubairy,et al.  Uncertainty inequalities as entanglement criteria for negative partial-transpose States. , 2008, Physical review letters.

[18]  Frédéric Grosshans,et al.  Continuous-variable quantum cryptography is secure against non-Gaussian attacks. , 2004, Physical review letters.

[19]  M. Reid Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations , 1999, quant-ph/9909030.

[20]  Asher Peres,et al.  Emergence of local realism in fuzzy observations of correlated quantum systems , 1992 .

[21]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[22]  M. Raymer Uncertainty principle for joint measurement of noncommuting variables , 1994 .

[23]  R. Radner PROCEEDINGS of the FOURTH BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY , 2005 .

[24]  M. Riesz Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires , 1926 .

[25]  S. Walborn,et al.  Revealing hidden Einstein-Podolsky-Rosen nonlocality. , 2011, Physical review letters.

[26]  Iwo Bialynicki-Birula Formulation of the uncertainty relations in terms of the Rényi entropies , 2006 .

[27]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[28]  D. Deutsch Uncertainty in Quantum Measurements , 1983 .

[29]  S. Walborn,et al.  Entropic entanglement criteria for continuous variables. , 2009, Physical review letters.

[30]  이진형,et al.  Quantum Theory : Concepts and Methods by Asher Peres (Kluwer Academic Publishers, 1995) , 2010 .

[31]  Lukasz Rudnicki Uncertainty related to position and momentum localization of a quantum state , 2010, 1010.3269.

[32]  C. Ross Found , 1869, The Dental register.

[33]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[34]  J. L. Kelly,et al.  B.S.T.J. briefs: On the simultaneous measurement of a pair of conjugate observables , 1965 .

[35]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[36]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[37]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[38]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[39]  I. Bialynicki-Birula,et al.  Entropic uncertainty relations , 1984 .

[40]  J. I. D. Vicente,et al.  Improved bounds on entropic uncertainty relations , 2007, 0709.1438.

[41]  I. Bialynicki-Birula,et al.  Uncertainty relations for information entropy in wave mechanics , 1975 .

[42]  H. P. Robertson The Uncertainty Principle , 1929 .

[43]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[44]  43 , 2014, Fetch the Devil.

[45]  Stefano Mancini,et al.  Entangling macroscopic oscillators exploiting radiation pressure. , 2002, Physical review letters.