Amine-oxide hybrid materials for acid gas separations

Organic–inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams. In particular, these materials are being extensively studied for the adsorption of CO2 from simulated flue gas streams, with an eye towards utilizing these materials as part of a post-combustion carbon capture process at large flue gas producing installations, such as coal-fired electricity-generating power plants. In this Application Article, the utilization of amine-modified organic–inorganic hybrid materials is discussed, focusing on important attributes of the materials, such as (i) CO2 adsorption capacities, (ii) adsorption and desorption kinetics, and (iii) material stability, that will determine if these materials may one day be useful adsorbents in practical CO2 capture applications. Specific research needs and limitations associated with the current body of work are identified.

[1]  Z. Zou,et al.  One-pot synthesis of the amine-modified meso-structured monolith CO2 adsorbent , 2010 .

[2]  Colin E. Snape,et al.  Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies , 2008 .

[3]  Sangil Kim,et al.  Tailoring pore properties of MCM-48 silica for selective adsorption of CO2. , 2005, The journal of physical chemistry. B.

[4]  K. J. Champagne,et al.  Parametric Study of Solid Amine Sorbents for the Capture of Carbon Dioxide , 2009 .

[5]  Zou Yong,et al.  Adsorption of Carbon Dioxide on Basic Alumina at High Temperatures , 2000 .

[6]  Costas Tsouris,et al.  Separation of CO2 from Flue Gas: A Review , 2005 .

[7]  O. Leal,et al.  Reversible adsorption of carbon dioxide on amine surface-bonded silica gel , 1995 .

[8]  W. Ahn,et al.  CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis , 2008 .

[9]  Youssef Belmabkhout,et al.  Triamine-grafted pore-expanded mesoporous silica for CO2 capture: Effect of moisture and adsorbent regeneration strategies , 2010 .

[10]  The Effect of Additives on Mass Transfer in CaCO3 or CaO Slurry Scrubbing of SO2 from Waste Gases , 1977 .

[11]  Vivek Kumar,et al.  Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies , 2009 .

[12]  A. Chaffee,et al.  CO2 adsorption by PAMAM dendrimers: Significant effect of impregnation into SBA-15 , 2009 .

[13]  Katsunori Yogo,et al.  Adsorption characteristics of carbon dioxide on organically functionalized SBA-15 , 2005 .

[14]  Guoying Zhao,et al.  Carbon dioxide adsorption on mesoporous silica surfaces containing amine-like motifs , 2010 .

[15]  J. Andresen,et al.  Novel nanoporous "molecular basket" adsorbent for CO2 capture , 2004 .

[16]  Ying Wang,et al.  Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine. , 2008, Chemistry.

[17]  A. C. Chang,et al.  In-Situ Infrared Study of CO2 Adsorption on SBA-15 Grafted with γ-(Aminopropyl)triethoxysilane , 2003 .

[18]  Rajesh A. Khatri,et al.  Carbon Dioxide Capture by Diamine-Grafted SBA-15: A Combined Fourier Transform Infrared and Mass Spectrometry Study , 2005 .

[19]  Xiaoliang Xu,et al.  Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified β-zeolite , 2009 .

[20]  V. Zeleňák,et al.  Organo-modified mesoporous silica for sorption of carbon dioxide , 2010 .

[21]  Bruce G. Miller,et al.  Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent , 2005 .

[22]  Youssef Belmabkhout,et al.  Further investigations of CO2 capture using triamine-grafted pore-expanded mesoporous silica , 2010 .

[23]  J. Andresen,et al.  Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41 , 2003 .

[24]  Wha-Seung Ahn,et al.  CO2 capture using mesoporous alumina prepared by a sol–gel process , 2011 .

[25]  R. Serna-Guerrero,et al.  Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough curves , 2010 .

[26]  N. Hedin,et al.  Temperature-induced uptake of CO2 and formation of carbamates in mesocaged silica modified with n-propylamines. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[27]  T. Tsuda,et al.  Amino Silica Gels Acting as a Carbon Dioxide Absorbent , 1992 .

[28]  Robert W. Stevens,et al.  Improved immobilized carbon dioxide capture sorbents , 2005 .

[29]  Won-Jin Son,et al.  Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials , 2008 .

[30]  Chuguang Zheng,et al.  Status of trace element emission in a coal combustion process: a review , 2004 .

[31]  Klaus S. Lackner,et al.  Envisioning carbon capture and storage: expanded possibilities due to air capture, leakage insurance, and C-14 monitoring , 2009 .

[32]  Yuan Chun,et al.  CO2 Capture by As‐Prepared SBA‐15 with an Occluded Organic Template , 2006 .

[33]  V. Zeleňák,et al.  Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties , 2008 .

[34]  Christopher W. Jones,et al.  Steam-stripping for regeneration of supported amine-based CO(2) adsorbents. , 2010, ChemSusChem.

[35]  Sadao Araki,et al.  Preparation and CO(2) adsorption properties of aminopropyl-functionalized mesoporous silica microspheres. , 2009, Journal of colloid and interface science.

[36]  S. Satyapal,et al.  Performance and Properties of a Solid Amine Sorbent for Carbon Dioxide Removal in Space Life Support Applications , 2001 .

[37]  Xiaoyi Liang,et al.  Poly(ethyleneimine)-Loaded Silica Monolith with a Hierarchical Pore Structure for H2S Adsorptive Removal , 2010 .

[38]  Chungsying Lu,et al.  Thermodynamics and regeneration of CO2 adsorption on mesoporous spherical-silica particles , 2009 .

[39]  T. Yashima,et al.  Adsorption of Carbon Dioxide on Amine-modified MSU-H Silica in the Presence of Water Vapor , 2008 .

[40]  Ji-Whan Ahn,et al.  Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity , 2010 .

[41]  Jessica M. Rosenholm and,et al.  Wet-Chemical Analysis of Surface Concentration of Accessible Groups on Different Amino-Functionalized Mesoporous SBA-15 Silicas , 2007 .

[42]  T. Laitinen,et al.  A study of trace element behavior in two modern coal-fired power plants I. Development and optimization of trace element analysis using reference materials , 1997 .

[43]  M. Miller Retrofit SO2 and NOx control technologies for coal‐fired power plants , 1986 .

[44]  Daniel Chinn,et al.  Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas , 2003 .

[45]  P. Harlick,et al.  Applications of Pore-Expanded Mesoporous Silica. 2. Development of a High-Capacity, Water-Tolerant Adsorbent for CO2 , 2005 .

[46]  Zifeng Yan,et al.  Amine-Modified SBA-15: Effect of Pore Structure on the Performance for CO2 Capture , 2011 .

[47]  Parveen Kumar,et al.  Periodic mesoporous organic–inorganic hybrid materials: Applications in membrane separations and adsorption , 2010 .

[48]  A. Laaksonen,et al.  Sorbents for CO(2) capture from flue gas--aspects from materials and theoretical chemistry. , 2010, Nanoscale.

[49]  Sukumar Devotta,et al.  Monoethanol Amine Modified Zeolite 13X for CO2 Adsorption at Different Temperatures , 2007 .

[50]  Ryan P. Lively,et al.  Enabling Low-Cost CO2 Capture via Heat Integration , 2010 .

[51]  Yao Shi,et al.  Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6 , 2010 .

[52]  T. Yagi,et al.  Application of chemical absorption process to CO2 recovery from flue gas generated in power plants , 1992 .

[53]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[54]  Yijun Zhong,et al.  Synthesis and CO2 adsorption property of amino-functionalized silica nanospheres with centrosymmetric radial mesopores , 2010 .

[55]  Curt M. White,et al.  Degradation Pathways for Monoethanolamine in a CO2 Capture Facility , 2003 .

[56]  Amornvadee Veawab,et al.  Simultaneous Capture of Mercury and CO2 in Amine-Based CO2 Absorption Process , 2010 .

[57]  G. P. Knowles,et al.  Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents , 2005 .

[58]  Armin D. Ebner,et al.  State-of-the-art Adsorption and Membrane Separation Processes for Carbon Dioxide Production from Carbon Dioxide Emitting Industries , 2009 .

[59]  T. Yashima,et al.  Adsorption of Carbon Dioxide on Aminosilane-modified Mesoporous Silica , 2005 .

[60]  Chunshan Song,et al.  A nanoporous polymeric sorbent for deep removal of H2S from gas mixtures for hydrogen purification , 2007 .

[61]  Shou-Heng Liu,et al.  Highly Stable Amine-modified Mesoporous Silica Materials for Efficient CO2 Capture , 2010 .

[62]  Xin Fu,et al.  Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO2 and CH4 , 2007 .

[63]  Jun Zhang,et al.  CO2 capture by adsorption: Materials and process development , 2007 .

[64]  Lin Sun,et al.  Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group , 2008 .

[65]  F. Rubiera,et al.  Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for CO2 capture , 2008 .

[66]  Carlos A. Grande,et al.  Challenges of electric swing adsorption for CO(2) capture. , 2010, ChemSusChem.

[67]  E. S. Sanz-Pérez,et al.  CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15 , 2010 .

[68]  Christopher W. Jones,et al.  Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam. , 2010, ACS applied materials & interfaces.

[69]  A. Chaffee,et al.  Adsorption of CO2 on mesocellular siliceous foam iteratively functionalized with dendrimers , 2009 .

[70]  M. Iliuta,et al.  Grafted Amine/CO2 Interactions in (Gas—)Liquid—Solid Adsorption/Absorption Equilibria , 2009 .

[71]  Holly Krutka,et al.  Evaluation of solid sorbents as a retrofit technology for CO2 capture , 2010 .

[72]  J. Tanthana,et al.  Oxide‐supported tetraethylenepentamine for CO2 capture , 2009 .

[73]  Diana N. Tran,et al.  Ethylenediamine-modified SBA-15 as Regenerable CO2 Sorbent , 2005 .

[74]  Gary T. Rochelle,et al.  Oxidation Inhibitors for Copper and Iron Catalyzed Degradation of Monoethanolamine in CO2 Capture Processes , 2006 .

[75]  A. Sayari,et al.  Simultaneous Adsorption of H2S and CO2 on Triamine-Grafted Pore-Expanded Mesoporous MCM-41 Silica , 2011 .

[76]  J. Tanthana,et al.  In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO(2) capture. , 2010, ChemSusChem.

[77]  T. Valdés-Solís,et al.  Low-temperature SCR of NOx with NH3 over carbon-ceramic supported catalysts , 2003 .

[78]  Eric J. Beckman,et al.  Thermally reversible polymeric sorbents for acid gases: CO2, SO2, and NOx , 1994 .

[79]  E. S. Sanz-Pérez,et al.  Influence of Drying Conditions on Amine-Functionalized SBA-15 as Adsorbent of CO2 , 2011 .

[80]  John P. Baltrus,et al.  Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide , 2008 .

[81]  Ryan P. Lively,et al.  Synthesis–Structure–Property Relationships for Hyperbranched Aminosilica CO2 Adsorbents , 2009 .

[82]  K. Lackner Capture of carbon dioxide from ambient air , 2009 .

[83]  Xiaoliang Ma,et al.  "Molecular basket" sorbents for separation of CO(2) and H(2)S from various gas streams. , 2009, Journal of the American Chemical Society.

[84]  Wojciech Jozewicz,et al.  SO2 scrubbing technologies: A review , 2001 .

[85]  A. Scaroni,et al.  Influence of Moisture on CO2 Separation from Gas Mixture by a Nanoporous Adsorbent Based on Polyethylenimine-Modified Molecular Sieve MCM-41 , 2005 .

[86]  Won-Jin Son,et al.  Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption , 2009 .

[87]  Christopher W. Jones,et al.  Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. , 2011, Environmental science & technology.

[88]  Xiaoxing Wang,et al.  Infrared Study of CO2 Sorption over ?Molecular Basket? Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve , 2009 .

[89]  Youssef Belmabkhout,et al.  Amine-bearing mesoporous silica for CO2 removal from dry and humid air , 2010 .

[90]  Youssef Belmabkhout,et al.  Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture: An experimental and statistical study , 2010 .

[91]  T. Yashima,et al.  Adsorption of Carbon Dioxide on Amine Modified SBA-15 in the Presence of Water Vapor , 2004 .

[92]  Eugeny Y. Kenig,et al.  CO2‐Alkanolamine Reaction Kinetics: A Review of Recent Studies , 2007 .

[93]  Wen-Ching Yang,et al.  Exploratory Design Study on Reactor Configurations for Carbon Dioxide Capture from Conventional Power Plants Employing Regenerable Solid Sorbents , 2009 .

[94]  Seung-Tae Yang,et al.  Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. , 2009, Chemical communications.

[95]  Shih-Chun Kuo,et al.  Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites , 2010 .

[96]  Colin E. Snape,et al.  CO2 capture using some fly ash-derived carbon materials , 2005 .

[97]  Youssef Belmabkhout,et al.  Modeling CO2 adsorption on amine-functionalized mesoporous silica: 1. A semi-empirical equilibrium model , 2010 .

[98]  Rodrigo Serna-Guerrero,et al.  New Insights into the Interactions of CO2 with Amine-Functionalized Silica , 2008 .

[99]  J. Rocha,et al.  Adsorption and Activation of CO2 by Amine-Modified Nanoporous Materials Studied by Solid-State NMR and 13CO2 Adsorption , 2011 .

[100]  P. Harlick,et al.  Applications of Pore-Expanded Mesoporous Silicas. 3. Triamine Silane Grafting for Enhanced CO2 Adsorption , 2006 .

[101]  A. Chaffee,et al.  Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties , 2008 .

[102]  Christopher W. Jones,et al.  CO(2) capture from dilute gases as a component of modern global carbon management. , 2011, Annual review of chemical and biomolecular engineering.

[103]  Michael Caplow,et al.  Kinetics of carbamate formation and breakdown , 1968 .

[104]  A. Sayari,et al.  Applications of Pore-Expanded Mesoporous Silica. 5. Triamine Grafted Material with Exceptional CO2 Dynamic and Equilibrium Adsorption Performance , 2007 .

[105]  Youssef Belmabkhout,et al.  Stabilization of amine-containing CO(2) adsorbents: dramatic effect of water vapor. , 2010, Journal of the American Chemical Society.

[106]  J. Rosenholm,et al.  Amino-functionalization of large-pore mesoscopically ordered silica by a one-step hyperbranching polymerization of a surface-grown polyethyleneimine. , 2006, Chemical communications.

[107]  Christopher W. Jones,et al.  Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. , 2008, Journal of the American Chemical Society.

[108]  Youssef Belmabkhout,et al.  Adsorption of CO2-Containing Gas Mixtures over Amine-Bearing Pore-Expanded MCM-41 Silica: Application for Gas Purification , 2010 .

[109]  Seda Keskin,et al.  Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? , 2010, ChemSusChem.

[110]  Youssef Belmabkhout,et al.  Amine-bearing mesoporous silica for CO(2) and H(2)S removal from natural gas and biogas. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[111]  A. Sayari,et al.  Isothermal versus Non-isothermal Adsorption−Desorption Cycling of Triamine-Grafted Pore-Expanded MCM-41 Mesoporous Silica for CO2 Capture from Flue Gas , 2010 .

[112]  Gary T. Rochelle,et al.  Oxidative Degradation of Monoethanolamine , 2002 .

[113]  Christopher W. Jones,et al.  High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules , 2011 .

[114]  Ji-Whan Ahn,et al.  Synthesis of mesoporous silica from bottom ash and its application for CO2 sorption , 2010 .

[115]  Bruce G. Miller,et al.  Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture , 2002 .

[116]  Ryan P. Lively,et al.  Hollow Fiber Adsorbents for CO2 Removal from Flue Gas , 2009 .

[117]  Steven A. Benson,et al.  Status review of mercury control options for coal-fired power plants , 2003 .

[118]  Chunshan Song,et al.  Low-temperature removal of H2S by nanoporous composite of polymer-mesoporous molecular sieve MCM-41 as adsorbent for fuel cell applications , 2005 .

[119]  Tao Zhang,et al.  CO2 adsorption on SBA-15 modified by aminosilane , 2007 .

[120]  P. Llewellyn,et al.  Study of Carbon Dioxide Adsorption on Mesoporous Aminopropylsilane-Functionalized Silica and Titania Combining Microcalorimetry and in Situ Infrared Spectroscopy , 2009 .

[121]  T. L. Donaldson,et al.  Carbon Dioxide Reaction Kinetics and Transport in Aqueous Amine Membranes , 1980 .

[122]  Chung-Sung Tan,et al.  Adsorption of CO2 onto amine-grafted mesoporous silicas , 2009 .

[123]  Chungsying Lu,et al.  Adsorption of Carbon Dioxide from Gas Streams via Mesoporous Spherical-Silica Particles , 2010, Journal of the Air & Waste Management Association.

[124]  Tetsuya Tsuda,et al.  Polyethyleneimine and macrocyclic polyamine silica gels acting as carbon dioxide absorbents , 1992 .

[125]  Gary T. Rochelle,et al.  Catalysts and inhibitors for oxidative degradation of monoethanolamine , 2009 .

[126]  E. Simanek,et al.  Engineering Nanospaces: Iterative Synthesis of Melamine‐Based Dendrimers on Amine‐Functionalized SBA‐15 Leading to Complex Hybrids with Controllable Chemistry and Porosity , 2004 .

[127]  Christopher W. Jones,et al.  Oxidative Degradation of Aminosilica Adsorbents Relevant to Postcombustion CO2 Capture , 2011 .

[128]  Xiaoxing Wang,et al.  Mesoporous-molecular-sieve-supported Polymer Sorbents for Removing H2S from Hydrogen Gas Streams , 2008 .

[129]  Robert Quinn Ion Exchange Resins as Reversible Acid Gas Absorbents , 2003 .

[130]  Juan Carlos Abanades,et al.  Narrow fluidised beds arranged to exchange heat between a combustion chamber and a CO2 sorbent regenerator , 2007 .

[131]  Youssef Belmabkhout,et al.  Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions , 2009 .