Nature of FeIII-O2, FeII-CO and FeIII-CN complexes of hemoprotein models

[1]  T. L. Hill,et al.  Steric Effects. I. Van der Waals Potential Energy Curves , 1948 .

[2]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[3]  L. Bartell,et al.  Molecular structure of (CH3)3PF2: An electron diffraction study of an analogue of ArF2 , 1973 .

[4]  Judith C. Gallucci,et al.  Pentacoordinated molecules. 24. Computer simulation of phosphorane structures , 1977 .

[5]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[6]  James P. Collman,et al.  Structure of a dioxygen adduct of (1-methylimidazole)-meso-tetrakis(.alpha.,.alpha.,.alpha.,.alpha.,-o-pivalamidophenyl)porphinatoiron(II). An iron dioxygen model for the heme component of oxymyoglobin , 1978 .

[7]  K. Suslick,et al.  Models for the Active Site of Oxygen-Binding Hemoproteins. Dioxygen Binding Properties and the Structures of (2-Methylimidazole)-meso-tetra(α,α,α,α-o-Pivalamidophenyl)porphyrinatoiron(II)-Ethanol and Its Dioxygen Adduct , 1980 .

[8]  M. Perutz,et al.  Review Lecture - Stereochemical mechanism of oxygen transport by haemoglobin , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  A. Veillard,et al.  Ab Initio Calculations of Metalloporphyrins , 1982 .

[10]  A. Veillard,et al.  Structure and properties of a model of deoxyheme, an ab initio SCF calculation , 1983 .

[11]  M. Rohmer Electronic ground state of iron(II)porphyrin. Ab initio SCF and CI calculations and computed electron deformation densities , 1985 .

[12]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[13]  Ben F. Luisi,et al.  Stereochemistry of cooperative mechanisms in hemoglobin , 1987 .

[14]  Christopher A. Reed,et al.  A deoxymyoglobin model with a sterically unhindered axial imidazole , 1988 .

[15]  J. Fettinger,et al.  Structural characterization of a sterically encumbered iron(II) porphyrin CO complex , 1989 .

[16]  J. Landrum,et al.  X-ray diffraction study of the electronic ground state of (meso-tetraphenylporphinato)iron(II) , 1990 .

[17]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[18]  B. Malmström,et al.  Cytochrome oxidase as a redox-linked proton pump. , 1990, Acta physiologica Scandinavica. Supplementum.

[19]  K. Welinder Superfamily of plant, fungal and bacterial peroxidases , 1992 .

[20]  Francisco Torrens,et al.  Conformational aspects of some asymmetric Diels-Alder reactions. A molecular mechanics + polarization study , 1992 .

[21]  Teizo Kitagawa,et al.  THE PROXIMAL RESIDUE LARGELY DETERMINES THE CO DISTORTION IN CARBONMONOXY GLOBIN PROTEINS. AN AB INITIO STUDY OF A HEME PROSTHETIC UNIT , 1994 .

[22]  J. Barber,et al.  Revealing the blueprint of photosynthesis , 1994, Nature.

[23]  Christopher A. Reed,et al.  Synthetic Heme Dioxygen Complexes , 1994 .

[24]  R. Matthews,et al.  How a protein binds B12: A 3.0 A X-ray structure of B12-binding domains of methionine synthase. , 1994, Science.

[25]  M. Halcrow,et al.  Biomimetic Chemistry of Nickel , 1994 .

[26]  Teizo Kitagawa,et al.  The Proximal Residue Largely Determines the CO Distortion in Carbon Monoxy Globin Proteins. An ab Initio Study of a Heme Prosthetic Unit , 1995 .

[27]  M. Dupuis,et al.  Structure of a Model Transient Peroxide Intermediate of Peroxidases by ab Initio Methods , 1996 .

[28]  Ivonne M. C. M. Rietjens,et al.  Molecular orbital study of the hydroxylation of benzene and monofluorobenzene catalysed by iron-oxo porphyrin π cation radical complexes , 1996, JBIC Journal of Biological Inorganic Chemistry.

[29]  J. Dawson,et al.  Heme-Containing Oxygenases. , 1996, Chemical reviews.

[30]  David F. Bocian,et al.  Carbonyl Tilting and Bending Potential Energy Surface of Carbon Monoxyhemes , 1996 .

[31]  G. Loew,et al.  Identification of putative peroxide intermediates of peroxidases by electronic structure and spectra calculations , 1996 .

[32]  T. Spiro,et al.  Will the real FeCO please stand up? , 1997, JBIC Journal of Biological Inorganic Chemistry.

[33]  Michele Parrinello,et al.  Equilibrium Geometries and Electronic Structure of Iron−Porphyrin Complexes: A Density Functional Study , 1997 .

[34]  T. Vangberg,et al.  Deformability of Fe(II)CO and Fe(III)CN groups in heme protein models: nonlocal density functional theory calculations , 1997, JBIC Journal of Biological Inorganic Chemistry.

[35]  Michele Parrinello,et al.  A density functional study of iron-porphyrin complexes , 1997 .

[36]  G. Loew,et al.  An ab Initio Model System Investigation of the Proposed Mechanism for Activation of Peroxidases: Cooperative Catalytic Contributions from the Ion and Microsolvent Water , 1998 .

[37]  Michele Parrinello,et al.  A comparative study of O2, CO, and NO binding to iron–porphyrin , 1998 .

[38]  E. Oldfield,et al.  Carbonyl Complexes of Iron(II), Ruthenium(II), and Osmium(II) 5,10,15,20-Tetraphenylporphyrinates: A Comparative Investigation by X-ray Crystallography, Solid-State NMR Spectroscopy, and Density Functional Theory , 1998 .

[39]  Gilda H. Loew,et al.  Structure and Spectra of Ferrous Dioxygen and Reduced Ferrous Dioxygen Model Cytochrome P450 , 1998 .

[40]  T. Spiro,et al.  Discordant Results on FeCO Deformability in Heme Proteins Reconciled by Density Functional Theory , 1998 .

[41]  Feliu Maseras,et al.  Binding of dioxygen in a picket-fence porphyrin complex of iron. A theoretical QM/MM study , 1998 .

[42]  Michael T. Green ROLE OF THE AXIAL LIGAND IN DETERMINING THE SPIN STATE OF RESTING CYTOCHROME P450 , 1998 .

[43]  Emma Sigfridsson,et al.  On the significance of hydrogen bonds for the discrimination between CO and O2 by myoglobin , 1999, JBIC Journal of Biological Inorganic Chemistry.

[44]  Kyeongjae Cho,et al.  Ab initio study on the molecular recognition by metalloporphyrins: CO interaction with iron porphyrin , 1999 .

[45]  M. Parrinello,et al.  Factors Influencing Ligand-Binding Properties of Heme Models: A First Principles Study of Picket-Fence and Protoheme Complexes , 1999 .

[46]  E. Oldfield,et al.  Solid-State NMR, Crystallographic and Density Functional Theory Investigation of Fe−CO and Fe−CO Analogue Metalloporphyrins and Metalloproteins† , 1999 .

[47]  Michele Parrinello,et al.  The Iron−Sulfur Bond in Cytochrome c , 1999 .

[48]  Francisco Torrens,et al.  Polarization Force Fields for Peptides Implemented in ECEPP2 and MM2 , 2000 .

[49]  Jean-Didier Maréchal,et al.  Theoretical modeling of the heme group with a hybrid QM/MM method , 2000 .

[50]  Mikael P. Johansson,et al.  Change in electron and spin density upon electron transfer to haem. , 2002, Biochimica et biophysica acta.

[51]  Mikael P. Johansson,et al.  The spin distribution in low-spin iron porphyrins. , 2002, Journal of the American Chemical Society.