Geometrically nonlinear analysis of cylindrical shells using the element-free kp-Ritz method

Abstract In this paper, the geometrically nonlinear analysis of cylindrical shells is carried out using the element-free kp-Ritz method. The first-order shear deformation shell theory, which can cater for both thin and relatively thick shells, is utilized in the present study. Meshfree kernel particle functions are employed to approximate the two-dimensional displacement field. The nonlinear equilibrium equations are formulated by applying the Ritz procedure to the energy functional of shells. The Newton–Raphson method and the arc length technique are used to determine the load–displacement path. To validate the accuracy and stability of this method, convergence studies based on the support size and number of nodes were performed. Comparisons were also made with the existing results available in the open literature, and good agreement is obtained.

[1]  K. Bathe,et al.  Finite Element Methods for Nonlinear Problems , 1986 .

[2]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[3]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[4]  Carlo Sansour,et al.  Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assesment of hybrid stress, hybrid strain and enhanced strain elements , 2000 .

[5]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[6]  Yijun Liu ANALYSIS OF SHELL-LIKE STRUCTURES BY THE BOUNDARY ELEMENT METHOD BASED ON 3-D ELASTICITY: FORMULATION AND VERIFICATION , 1998 .

[7]  P. G. Bergan,et al.  Nonlinear analysis of free-form shells by flat finite elements , 1978 .

[8]  Yang Xiang,et al.  Flexural vibration of shear deformable circular and annular plates on ring supports , 1993 .

[9]  Hirohisa Noguchi,et al.  Element free analyses of shell and spatial structures , 2000 .

[10]  G. Wempner Discrete approximations related to nonlinear theories of solids , 1971 .

[11]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[12]  C. Chia Nonlinear analysis of plates , 1980 .

[13]  M. Aliabadi,et al.  Boundary element analysis of reinforced shear deformable shells , 2002 .

[14]  T. Belytschko,et al.  Analysis of thin shells by the Element-Free Galerkin method , 1996 .

[15]  Y. K. Cheung,et al.  Three-dimensional vibration analysis of cantilevered and completely free isosceles triangular plates , 2002 .

[16]  K. Liew,et al.  Formulation of Mindlin-Engesser model for stiffened plate vibration , 1995 .

[17]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[18]  S. T. Dennis,et al.  A Galerkin solution to geometrically nonlinear laminated shallow shell equations , 1997 .

[19]  D. G. Ashwell,et al.  Finite elements for thin shells and curved members , 1976 .

[20]  W. Hao,et al.  Numerical simulations of large deformation of thin shell structures using meshfree methods , 2000 .

[21]  J. N. Reddy,et al.  Layer-wise shell theory for postbuckling of laminated circular cylindrical shells , 1992 .

[22]  Chang-Koon Choi,et al.  An effective four node degenerated shell element for geometrically nonlinear analysis , 1996 .

[23]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[24]  J. L. Sanders,et al.  NONLINEAR THEORIES FOR THIN SHELLS , 1963 .

[25]  K. Y. Sze,et al.  Curved quadratic triangular degenerated‐ and solid‐shell elements for geometric non‐linear analysis , 2003 .

[26]  Günther Kuhn,et al.  Mixed-dimensional, symmetric coupling of FEM and BEM , 2003 .

[27]  Yang Xiang,et al.  Buckling of thick skew plates , 1993 .

[28]  T. Hughes,et al.  Nonlinear finite element shell formulation accounting for large membrane strains , 1983 .

[29]  K. M. Liew,et al.  Free vibration analysis of conical shells via the element-free kp-Ritz method , 2005 .

[30]  K. M. Liew,et al.  Free vibration of two-side simply-supported laminated cylindrical panels via the mesh-free kp-Ritz method , 2004 .

[31]  Ted Belytschko,et al.  Resultant-stress degenerated-shell element , 1986 .

[32]  K. Y. Sze,et al.  An eight‐node hybrid‐stress solid‐shell element for geometric non‐linear analysis of elastic shells , 2002 .

[33]  K. Y. Sze,et al.  A hybrid stress nine-node degenerated shell element for geometric nonlinear analysis , 1999 .

[34]  K. Y. Sze,et al.  Popular benchmark problems for geometric nonlinear analysis of shells , 2004 .

[35]  E. Riks The Application of Newton's Method to the Problem of Elastic Stability , 1972 .

[36]  Peter Wriggers,et al.  A triangular finite shell element based on a fully nonlinear shell formulation , 2003 .

[37]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[38]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .