Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles

Author(s): Soshnikov, Alexander | Abstract: The paper studies the spectral properties of large Wigner, band and sample covariance random matrices with heavy tails of the marginal distributions of matrix entries.

[1]  Izrailev,et al.  Scaling properties of band random matrices. , 1990, Physical review letters.

[2]  Alice Guionnet,et al.  Large deviations upper bounds and central limit theorems for non-commutative functionals of Gaussian large random matrices , 2002 .

[3]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[4]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[5]  J. Bouchaud,et al.  Theory of Lévy matrices. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  T. Wettig,et al.  RANDOM MATRIX THEORY AND CHIRAL SYMMETRY IN QCD , 2000 .

[7]  Thomas Mikosch,et al.  Regularly varying functions , 2006 .

[8]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[9]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[10]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[11]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[12]  J. Galambos Review: M. R. Leadbetter, Georg Lindgren and Holger Rootzen, Extremes and related properties of random sequences and processes , 1985 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[15]  W. Browder,et al.  Annals of Mathematics , 1889 .

[16]  E. Wigner Random Matrices in Physics , 1967 .

[17]  I. Ibragimov,et al.  Independent and stationary sequences of random variables , 1971 .

[18]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[19]  Yan V Fyodorov,et al.  Random matrices close to Hermitian or unitary: overview of methods and results , 2003 .

[20]  K. Johansson Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.

[21]  P. Major,et al.  On the number of lattice points between two enlarged and randomly shifted, copies of an oval , 1994 .

[22]  M. Berry,et al.  Level clustering in the regular spectrum , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[24]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[25]  Nariyuki Minami,et al.  Local fluctuation of the spectrum of a multidimensional Anderson tight binding model , 1996 .

[26]  Alexander Soshnikov,et al.  Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails , 2004 .

[27]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[28]  L. Arnold On the asymptotic distribution of the eigenvalues of random matrices , 1967 .

[29]  G. CASATI,et al.  Wigner’s semicircle law for band random matrices , 1993 .

[30]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[31]  L. Pastur,et al.  Limiting eigenvalue distribution for band random matrices , 1992 .

[32]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[33]  J. Marklof The Berry-Tabor Conjecture , 2001 .

[34]  L. Pastur On the spectrum of random matrices , 1972 .

[35]  B. M. Fulk MATH , 1992 .

[36]  C. Beenakker Random-matrix theory of quantum transport , 1996, cond-mat/9612179.

[37]  J. Marklof Pair correlation densities of inhomogeneous quadratic forms , 2002, math/0210197.

[38]  On the supersymmetric partition function in QCD-inspired random matrix models , 2002, cond-mat/0210647.

[39]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[40]  S. A. Molčanov,et al.  The local structure of the spectrum of the one-dimensional Schrödinger operator , 1981 .

[41]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .