Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles
暂无分享,去创建一个
[1] Izrailev,et al. Scaling properties of band random matrices. , 1990, Physical review letters.
[2] Alice Guionnet,et al. Large deviations upper bounds and central limit theorems for non-commutative functionals of Gaussian large random matrices , 2002 .
[3] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[4] A. Soshnikov. Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.
[5] J. Bouchaud,et al. Theory of Lévy matrices. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[6] T. Wettig,et al. RANDOM MATRIX THEORY AND CHIRAL SYMMETRY IN QCD , 2000 .
[7] Thomas Mikosch,et al. Regularly varying functions , 2006 .
[8] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[9] Ericka Stricklin-Parker,et al. Ann , 2005 .
[10] János Komlós,et al. The eigenvalues of random symmetric matrices , 1981, Comb..
[11] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[12] J. Galambos. Review: M. R. Leadbetter, Georg Lindgren and Holger Rootzen, Extremes and related properties of random sequences and processes , 1985 .
[13] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[14] P. Forrester. The spectrum edge of random matrix ensembles , 1993 .
[15] W. Browder,et al. Annals of Mathematics , 1889 .
[16] E. Wigner. Random Matrices in Physics , 1967 .
[17] I. Ibragimov,et al. Independent and stationary sequences of random variables , 1971 .
[18] C. Tracy,et al. Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .
[19] Yan V Fyodorov,et al. Random matrices close to Hermitian or unitary: overview of methods and results , 2003 .
[20] K. Johansson. Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.
[21] P. Major,et al. On the number of lattice points between two enlarged and randomly shifted, copies of an oval , 1994 .
[22] M. Berry,et al. Level clustering in the regular spectrum , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[23] V. Marčenko,et al. DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .
[24] R. F.,et al. Mathematical Statistics , 1944, Nature.
[25] Nariyuki Minami,et al. Local fluctuation of the spectrum of a multidimensional Anderson tight binding model , 1996 .
[26] Alexander Soshnikov,et al. Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails , 2004 .
[27] M. R. Leadbetter,et al. Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .
[28] L. Arnold. On the asymptotic distribution of the eigenvalues of random matrices , 1967 .
[29] G. CASATI,et al. Wigner’s semicircle law for band random matrices , 1993 .
[30] A. Soshnikov. A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.
[31] L. Pastur,et al. Limiting eigenvalue distribution for band random matrices , 1992 .
[32] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[33] J. Marklof. The Berry-Tabor Conjecture , 2001 .
[34] L. Pastur. On the spectrum of random matrices , 1972 .
[35] B. M. Fulk. MATH , 1992 .
[36] C. Beenakker. Random-matrix theory of quantum transport , 1996, cond-mat/9612179.
[37] J. Marklof. Pair correlation densities of inhomogeneous quadratic forms , 2002, math/0210197.
[38] On the supersymmetric partition function in QCD-inspired random matrix models , 2002, cond-mat/0210647.
[39] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[40] S. A. Molčanov,et al. The local structure of the spectrum of the one-dimensional Schrödinger operator , 1981 .
[41] E. Wigner. On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .