Quantum algorithm for hyperparameters estimation

Hyperparameters play an important role in machine learning algorithms, such as linear regression and support vector machines. In this paper, we present a quantum hyperparameters estimation (QHE) algorithm and design the corresponding quantum circuit to accomplish HE effectively. Then we analyze the complexity, probability, and fidelity of the whole algorithm. Finally, we deploy a numerical simulation of a small-scale QHE circuit on the ibmqx4 quantum processor. Importantly, our algorithm and circuit may inspire new investigations in the field of secure quantum machine learning.

[1]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[2]  Ying Liu,et al.  Quantum algorithm for support matrix machines , 2017 .

[3]  Masoud Mohseni,et al.  Quantum support vector machine for big feature and big data classification , 2013, Physical review letters.

[4]  Y. Liu,et al.  Efficient quantum circuit for singular-value thresholding , 2017, Physical Review A.

[5]  Dan-Bo Zhang,et al.  Physical implementation of quantum nonparametric learning with trapped ions , 2019, ArXiv.

[6]  M. Schuld,et al.  Prediction by linear regression on a quantum computer , 2016, 1601.07823.

[7]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[8]  Ewin Tang,et al.  Quantum-inspired classical algorithms for principal component analysis and supervised clustering , 2018, ArXiv.

[9]  S. Lloyd,et al.  Architectures for a quantum random access memory , 2008, 0807.4994.

[10]  Mile Gu,et al.  Experimental quantum computing to solve systems of linear equations. , 2013, Physical review letters.

[11]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[12]  Yevgeniy Vorobeychik,et al.  Data Poisoning Attacks on Factorization-Based Collaborative Filtering , 2016, NIPS.

[13]  Jiabin Yuan,et al.  Quantum algorithm and quantum circuit for A-optimal projection: Dimensionality reduction , 2018, Physical Review A.

[14]  Elizabeth A. Peck,et al.  Introduction to Linear Regression Analysis , 2001 .

[15]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[16]  Ewin Tang,et al.  A quantum-inspired classical algorithm for recommendation systems , 2018, Electron. Colloquium Comput. Complex..

[17]  Jian-Wei Pan,et al.  Experimental realization of quantum algorithm for solving linear systems of equations , 2013, 1302.1946.

[18]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[19]  Micah Sherr,et al.  Hidden Voice Commands , 2016, USENIX Security Symposium.

[20]  Chao-Hua Yu,et al.  Quantum algorithm for visual tracking , 2018, Physical Review A.

[21]  J. Traub,et al.  Quantum algorithm and circuit design solving the Poisson equation , 2012, 1207.2485.

[22]  Stacey Jeffery,et al.  The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation , 2018, ICALP.

[23]  Binghui Wang,et al.  Stealing Hyperparameters in Machine Learning , 2018, 2018 IEEE Symposium on Security and Privacy (SP).

[24]  K. Fujii,et al.  Quantum analog-digital conversion , 2018, Physical Review A.

[25]  Martin Rötteler,et al.  Improved reversible and quantum circuits for Karatsuba-based integer multiplication , 2017, TQC.

[26]  Somesh Jha,et al.  Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing , 2014, USENIX Security Symposium.

[27]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[28]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[29]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[30]  S. Aaronson Read the fine print , 2015, Nature Physics.

[31]  Fan Zhang,et al.  Stealing Machine Learning Models via Prediction APIs , 2016, USENIX Security Symposium.

[32]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[33]  Peter Wittek,et al.  Quantum Machine Learning: What Quantum Computing Means to Data Mining , 2014 .

[34]  Rodney X. Sturdivant,et al.  Applied Logistic Regression: Hosmer/Applied Logistic Regression , 2005 .

[35]  Nathan Wiebe,et al.  Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics , 2018, STOC.

[36]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[37]  Seth Lloyd,et al.  Quantum algorithm for nonhomogeneous linear partial differential equations , 2018, Physical Review A.

[38]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.