Boris R. Vainberg (on his 80th birthday)

Boris R. Vainberg was born on March 17, 1938, in Moscow. His father was a Lead Engineer in an aviation design institute. His mother was a homemaker. From early age, Boris was attracted to mathematics and spent much of his time at home and in school working through collections of practice problems for the Moscow Mathematical Olympiad. His first mathematical library consisted of the books he received as one of the prize-winners of these olympiads.

[1]  B. Vainberg,et al.  Spectral analysis of non-local Schrödinger operators , 2016, 1603.01626.

[2]  E. Lakshtanov,et al.  On reconstruction of complex-valued once differentiable conductivities , 2015, 1511.08780.

[3]  E. Lakshtanov,et al.  A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy , 2015, 1509.06495.

[4]  B. Vainberg,et al.  Intermittency for branching walks with heavy tails , 2015, 1509.02214.

[5]  E. Lakshtanov,et al.  Recovery of interior eigenvalues from reduced near field data , 2015, 1501.03748.

[6]  Evgeny Lakshtanov,et al.  Sharp Weyl Law for Signed Counting Function of Positive Interior Transmission Eigenvalues , 2014, SIAM J. Math. Anal..

[7]  B. Vainberg,et al.  On mathematical foundation of the Brownian motor theory , 2013, 1304.6790.

[8]  E. Lakshtanov,et al.  Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem , 2012, 1212.6785.

[9]  B. Vainberg,et al.  On the negative spectrum of the hierarchical Schrödinger operator , 2012, 1206.4019.

[10]  B. Vainberg,et al.  Bargmann type estimates of the counting function for general Schrödinger operators , 2012, 1201.3135.

[11]  Yuri A. Godin,et al.  The effect of disorder on the wave propagation in one-dimensional periodic optical systems , 2011, 1110.4132.

[12]  B. Vainberg,et al.  Scattering of solitons for coupled wave-particle equations , 2010, Journal of mathematical analysis and applications.

[13]  홍대기,et al.  Wave propagation in periodic networks of thin fibers , 2009, 0908.0156.

[14]  M. Cranston,et al.  Continuous Model for Homopolymers , 2009, 0902.2830.

[15]  B. Vainberg,et al.  Propagation of Waves in Networks of Thin Fibers , 2009, 0902.1567.

[16]  B. Vainberg,et al.  Laplace Operator in Networks of Thin Fibers: Spectrum Near the Threshold , 2007, 0704.2795.

[17]  B. Vainberg,et al.  Scattering Solutions in Networks of Thin Fibers: Small Diameter Asymptotics , 2006, math-ph/0609021.

[18]  B. Vainberg,et al.  Schrödinger operators with matrix potentials. Transition from the absolutely continuous to the singular spectrum , 2003, math-ph/0308012.

[19]  B. Vainberg,et al.  Radiation conditions for the difference schrödinger operators , 2001 .

[20]  P. Kuchment,et al.  On absence of embedded eigenvalues for schrÖdinger operators with perturbed periodic potentials , 1999, math-ph/9904016.

[21]  B. Vainberg,et al.  Scattering on the system of the sparse bumps: multidimensional case , 1998 .

[22]  B. Vainberg,et al.  On Spectral Asymptotics for Domains with Fractal Boundaries of Cabbage Type , 1998 .

[23]  Alexander Komech,et al.  On asymptotic stability of stationary solutions to nonlinear wave and Klein-Gordon equations , 1996 .

[24]  B. Vainberg ON THE ANALYTICAL PROPERTIES OF THE RESOLVENT FOR A CERTAIN CLASS OF OPERATOR-PENCILS , 1968 .

[25]  B. Vainberg,et al.  UNIFORMLY NONELLIPTIC PROBLEMS. I , 1967 .

[26]  M. Cranston,et al.  A solvable model for homopolymers and self-similarity near the critical point , 2010 .

[27]  B. Vainberg,et al.  On Negative Spectrum of Schrödinger Type Operators , 2009 .

[28]  B. Vainberg,et al.  First KdV Integrals¶and Absolutely Continuous Spectrum¶for 1-D Schrödinger Operator , 2001 .

[29]  B. Vainberg,et al.  On spectral asymptotics for domains with fractal boundaries , 1997 .

[30]  B. Vainberg Scattering of waves in a medium depending periodically on time , 1992 .