A 0.07 mm$^2$ Asynchronous Logic CMOS Pulsed Receiver Based on Radio Events Self-Synchronization

This paper presents an ultra-low-power radio receiver implemented only with CMOS logic gates used as basic building blocks and proves its operation. The self-timed duty-cycled system is self-synchronized with the input radio signal, runs a noise-robust baseband detection and does not require any reference besides power supply. Based on S-OOK modulation, the 350-450 MHz digital radio RX occupies an area of 0.07 mm 2 in a 130 nm RFCMOS technology and achieves a 0.1% sensitivity of -63 dBm at 95 kbps, 380 MHz center frequency and 40 μW active power consumption at 1.1 V power supply. At 1.0 V it achieves -62 dBm sensitivity and 33 μW active power at ~ 0.1% error rate. The compact receiver, whose architecture is parametric and technology scalable, suits energy harvested and miniaturized biomedical applications. The paper also presents the potential advantages of asynchronous logic pulse radio and introduces an ad-hoc VHDL model demonstrating RTL-/gate-level accurate error-rate predictions capabilities based on digital simulation only, i.e., without requiring electrical-level co-simulation.

[1]  Youngsoo Shin,et al.  Clock Gating Synthesis of Pulsed-Latch Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[2]  Brendan O'Flynn,et al.  Antenna tuning for wearable wireless sensors , 2011, 2011 IEEE SENSORS Proceedings.

[3]  W.A. Serdijn,et al.  A sub-GHz UWB pulse generator for wireless implantable medical devices , 2011, 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[4]  Jan M. Rabaey,et al.  A Fully Integrated, 290 pJ/bit UWB Dual-Mode Transceiver for cm-Range Wireless Interconnects , 2012, IEEE Journal of Solid-State Circuits.

[5]  Chenling Huang,et al.  A New Architecture of UHF RFID Digital Receiver for SoC Implementation , 2007, 2007 IEEE Wireless Communications and Networking Conference.

[6]  Brian P. Otis,et al.  A 120μW MICS/ISM-band FSK receiver with a 44μW low-power mode based on injection-locking and 9x frequency multiplication , 2011, 2011 IEEE International Solid-State Circuits Conference.

[7]  Jan M. Rabaey,et al.  A 0.25V 460nW asynchronous neural signal processor with inherent leakage suppression , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[8]  Hugo De Man,et al.  Behavioral modeling and simulation of a mixed analog/digital automatic gain control loop in a 5 GHz WLAN receiver , 2003, 2003 Design, Automation and Test in Europe Conference and Exhibition.

[9]  Jan M. Rabaey,et al.  A 65 μW, 1.9 GHz RF to digital baseband wakeup receiver for wireless sensor nodes , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[10]  Hugo De Man,et al.  Beyond the horizon: The next 10x reduction in power - Challenges and solutions , 2011, ISSCC.

[11]  Peter R. Kinget,et al.  Error ratio model for synchronised-OOK IR-UWB receivers in AWGN channels , 2013 .

[12]  Mariagrazia Graziano,et al.  A VHDL-AMS Simulation Environment for an UWB Impulse Radio Transceiver , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  Chun Lee,et al.  32nm x86 OS-compliant PC on-chip with dual-core Atom® processor and RF WiFi transceiver , 2012, 2012 IEEE International Solid-State Circuits Conference.

[14]  Trond Ytterdal,et al.  Analog Circuit Design in Nanoscale CMOS Technologies , 2009, Proceedings of the IEEE.

[15]  S. Gambini,et al.  A 52 $\mu$ W Wake-Up Receiver With $-$ 72 dBm Sensitivity Using an Uncertain-IF Architecture , 2009, IEEE Journal of Solid-State Circuits.

[16]  Zhihua Wang,et al.  Design of a low-cost low-power baseband-processor for UHF RFID tag with asynchronous design technique , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[17]  Marco Crepaldi,et al.  An Ultra-Low-Power interference-robust IR-UWB transceiver chipset using self-synchronizing OOK modulation , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[18]  Miriam Leeser Reasoning about the function and timing of integrated circuits with interval temporal logic , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  David D. Wentzloff,et al.  An Ultra-Low-Power 9.8 GHz Crystal-Less UWB Transceiver With Digital Baseband Integrated in 0.18 µm BiCMOS , 2013, IEEE Journal of Solid-State Circuits.

[20]  Ruimin Xu,et al.  System level simulation of RF SoC , 2010 .

[21]  Kwen-Siong Chong,et al.  Synchronous-Logic and Globally-Asynchronous-Locally-Synchronous (GALS) Acoustic Digital Signal Processors , 2012, IEEE Journal of Solid-State Circuits.

[22]  Marco Crepaldi,et al.  A 130-nm CMOS 0.007-$\hbox{mm}^{2}$ Ring-Oscillator-Based Self-Calibrating IR-UWB Transmitter Using an Asynchronous Logic Duty-Cycled PLL , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[23]  Stephen Longfield,et al.  A Low Power Asynchronous GPS Baseband Processor , 2012, 2012 IEEE 18th International Symposium on Asynchronous Circuits and Systems.

[24]  Robert H. Dennard,et al.  CMOS scaling for high performance and low power-the next ten years , 1995, Proc. IEEE.

[25]  Y. Sanada,et al.  A CMOS ultra-wideband impulse radio transceiver for 1-mb/s data communications and /spl plusmn/2.5-cm range finding , 2006, IEEE Journal of Solid-State Circuits.

[26]  Tadahiro Kuroda,et al.  A CMOS ultra-wideband impulse radio transceiver for 1-Mb/s data communications and ±2.5-cm range finding , 2006, VLSIC 2006.

[27]  T. Vladimirova,et al.  Radiation Hardening by Design of Asynchronous Logic for Hostile Environments , 2009, IEEE Journal of Solid-State Circuits.

[28]  Poras T. Balsara,et al.  Event-driven Simulation and modeling of phase noise of an RF oscillator , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Martin Schubert An Analog-Node Model for VHDL-Based Simulation of RF Integrated Circuits , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[30]  Kofi A. A. Makinwa,et al.  A 2.4GHz 830pJ/bit duty-cycled wake-up receiver with −82dBm sensitivity for crystal-less wireless sensor nodes , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[31]  Jan M. Rabaey,et al.  A 0.25 V 460 nW Asynchronous Neural Signal Processor With Inherent Leakage Suppression , 2013, IEEE Journal of Solid-State Circuits.

[32]  Marco Crepaldi,et al.  A Very Low-Complexity 0.3–4.4 GHz 0.004 mm$ ^{2}$ All-Digital Ultra-Wide-Band Pulsed Transmitter for Energy Detection Receivers , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[33]  Frank Opteynde A maximally-digital radio receiver front-end , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[34]  Peter R. Kinget,et al.  A self-duty-cycled and synchronized UWB receiver SoC consuming 375pJ/b for −76.5dBm sensitivity at 2Mb/s , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[35]  Fernando Gehm Moraes,et al.  From VHDL register transfer level to SystemC transaction level modeling: a comparative case study , 2003, 16th Symposium on Integrated Circuits and Systems Design, 2003. SBCCI 2003. Proceedings..

[36]  John R. Long,et al.  A Short Range, Low Data Rate, 7.2 GHz-7.7 GHz FM-UWB Receiver Front-End , 2009, IEEE Journal of Solid-State Circuits.

[37]  Efstratios Skafidas,et al.  A 20 pJ/b (10 µW) digital receiver based on a new modulation (SAS) for retinal prosthesis application , 2011, 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems.

[38]  Li Huang,et al.  Ultra low power wireless and energy harvesting technologies — An ideal combination , 2010, 2010 IEEE International Conference on Communication Systems.