Boosting of Maximal Figure of Merit Classifiers for Automatic Image Annotation

Visual information contained in a scene is very complex and can be represented with multiple features describing aspects of the entire information. In this paper we propose a boosting approach to automatic image annotation by building strong classifiers based on multiple collections of weak concept classifiers with each collection focused on a single visual feature. The weak classifiers are trained with a maximal figure-of-merit learning approach. By exploiting multiple features the boosting procedure allows to build classifiers able to pick the most discriminative feature for the specific annotation task.

[1]  Konstantinos N. Plataniotis,et al.  Boosting linear discriminant analysis for face recognition , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[2]  Chin-Hui Lee,et al.  Automatic Image Annotation through Multi-Topic Text Categorization , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[3]  Nando de Freitas,et al.  A Statistical Model for General Contextual Object Recognition , 2004, ECCV.

[4]  David A. Forsyth,et al.  Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary , 2002, ECCV.

[5]  Michael I. Jordan,et al.  Modeling annotated data , 2003, SIGIR.

[6]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[7]  Chin-Hui Lee,et al.  A MFoM learning approach to robust multiclass multi-label text categorization , 2004, ICML.

[8]  J.R. Bellegarda,et al.  Exploiting latent semantic information in statistical language modeling , 2000, Proceedings of the IEEE.

[9]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[10]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[11]  R. Manmatha,et al.  Automatic image annotation and retrieval using cross-media relevance models , 2003, SIGIR.

[12]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[13]  R. Manmatha,et al.  Using Maximum Entropy for Automatic Image Annotation , 2004, CIVR.

[14]  Gerard Salton,et al.  The SMART Retrieval System , 1971 .

[15]  R. Manmatha,et al.  Multiple Bernoulli relevance models for image and video annotation , 2004, CVPR 2004.

[16]  Robert P. W. Duin,et al.  Boosting in Linear Discriminant Analysis , 2000, Multiple Classifier Systems.

[17]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.