It is common to summarize statistical comparisons by declarations of statistical significance or nonsignificance. Here we discuss one problem with such declarations, namely that changes in statistical significance are often not themselves statistically significant. By this, we are not merely making the commonplace observation that any particular threshold is arbitrary—for example, only a small change is required to move an estimate from a 5.1% significance level to 4.9%, thus moving it into statistical significance. Rather, we are pointing out that even large changes in significance levels can correspond to small, nonsignificant changes in the underlying quantities. The error we describe is conceptually different from other oft-cited problems—that statistical significance is not the same as practical importance, that dichotomization into significant and nonsignificant results encourages the dismissal of observed differences in favor of the usually less interesting null hypothesis of no difference, and that any particular threshold for declaring significance is arbitrary. We are troubled by all of these concerns and do not intend to minimize their importance. Rather, our goal is to bring attention to this additional error of interpretation. We illustrate with a theoretical example and two applied examples. The ubiquity of this statistical error leads us to suggest that students and practitioners be made more aware that the difference between “significant” and “not significant” is not itself statistically significant.
[1]
Taylor Francis Online,et al.
The American statistician
,
1947
.
[2]
D. House,et al.
Influence of electromagnetic fields on the efflux of calcium ions from brain tissue in vitro: a three-model analysis consistent with the frequency response up to 510 Hz.
,
1988,
Bioelectromagnetics.
[3]
J. Utts.
Replication and Meta-Analysis in Parapsychology
,
1991
.
[4]
David B. Dunson,et al.
Bayesian Data Analysis
,
2010
.
[5]
R. Blanchard,et al.
Homosexuality in men and number of older brothers.
,
1996,
The American journal of psychiatry.
[6]
D. Krantz.
The Null Hypothesis Testing Controversy in Psychology
,
1999
.
[7]
Jerry Nedelman,et al.
Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004
,
2005,
Comput. Stat..
[8]
A. Brix.
Bayesian Data Analysis, 2nd edn
,
2005
.
[9]
Gay males' sibling link: Men's homosexuality tied to having older brothers
,
2006
.
[10]
A. Bogaert.
Biological versus nonbiological older brothers and men's sexual orientation.
,
2006,
Proceedings of the National Academy of Sciences of the United States of America.