Spectroscopic analysis of the Er3+ (4f11) absorption intensities in NaBi(WO4)2

A spectroscopic analysis is performed on Er3+ (4f11) ions doped in order to assess this material for its potential as a near infrared laser. The Judd-Ofelt model is applied to the room temperature absorption intensities of Er3+ (4f11) in NaBi(WO4)2 to obtain the three phenomenological intensity parameters: Ω2 = 5.50 x 10-20 cm2, Ω4 = 1.00 x 10-20 cm2, and Ω6 = 0.71 x 10-20 cm2. The intensity parameters are then used to determine the radiative decay rates (emission probabilities), radiative lifetimes, and branching ratios for the Er3+ transitions from the excited state multiplet manifolds to the lower-lying manifold states. Using the radiative decay rates for the Er3+ (4f11) transitions between the corresponding excited states and the lower-lying states, the radiative lifetimes of eight excited states of Er3+ are determined in this host. Using the room temperature fluorescence lifetime and the radiative lifetime of the 4I13/2→4I15/2 (1.52 µm) transition of Er3+ in NaBi(WO4)2, the quantum efficiency is determined to be 84% for this laser material.